RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

PROTOLYTIC AND COMPLEXING PROPERTIES OF N-(2-HYDROXYETHYL)-IMINODIPROPIONIC ACID IN AQUEOUS SOLUTION

PII
10.31857/S0044457X25040118-1
DOI
10.31857/S0044457X25040118
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
575-582
Abstract
By the method of alkalinetric titration of aqueous solutions with pH-potentiometric indication at I = 0.1 mol/dm3 (KCl/KNO3) and t = 25 ± 1°C the acid dissociation constants of functional groups in the composition of a new reagent N-(2-hydroxyethyl)iminodipropionic acid pKa0 = 2.87 ± 0.02, pKa1 = 4.00 ± 0.02 and pKa2 = 9.25 ± 0.01. The complexation of the reagent with transition metal ions was studied. It is shown that N-functionalization of iminodipropionic acid by introduction of 2-hydroxyethyl substituent leads to a significant decrease in stability of complexes with copper(II) and nickel(II) ions, with cobalt(II), zinc(II) and cadmium(II) ions the stability of complexes does not significantly increase. Relatively high stability is characterized by complexes with silver(I) ions. Based on the obtained data, assumptions about the structure of the studied complexes were made.
Keywords
иминодипропионовая кислота катионы 3d-металлов комплексообразование pH-потенциометрия
Date of publication
22.01.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Kagoshima Y., Tokumitsu A., Masuda T. et al. // J. Antibiot. 2019. V. 72. № 12. P. 956. https://doi.org/10.1038/s41429-019-0235-3
  2. 2. Shurpik D.N., Aleksandrova Yu.I., Stoikov I.I. // Russ. J. Gen. Chem. 2018. V. 88. № 12. P. 2518. https://doi.org/10.1134/S1070363218120101
  3. 3. Kotodynska D. // Environ. Sci. Pollut. Res. 2013. V. 20. № 9. P. 5939. https://doi.org/10.1007/s11356-013-1576-2
  4. 4. Pinto I.S.S., Neto I.F.F., Soares H.M.V.M. // Environ. Sci. Pollut. Res. 2014. V. 21. № 20. P. 11893. https://doi.org/10.1007/s11356-014-2592-6
  5. 5. Zharkov G.P., Filimonova O.V., Petrova Yu.S. et al. // Russ. Chem. Bull. 2022. V. 71. № 1. P. 152. https://doi.org/10.1007/s11172-022-3389-2
  6. 6. Жарков Г.П., Буева Е.И., Филамонова О.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 4. C. 537. https://doi.org/10.31857/S0044457X22601791
  7. 7. Жарков Г.П., Филамонова О.В., Петрова Ю.С. и др. // Журн. неорган. химии. 2023. Т. 68. № 8. C. 1059. https://doi.org/10.31857/S0044457X22601218
  8. 8. Molochnikov L.S., Pestov A.V., Slepukhin P.A. et al. // Russ. J. Gen. Chem. 2009. V. 79. № 6. P. 1133. https://doi.org/10.1134/S1070363209060176
  9. 9. Pestov A.V., Slepukhin P.A., Yatluk Yu.G. // Russ. J. Coord. Chem. 2011. V. 37. № 8. P. 619. https://doi.org/10.1134/S1070328411070116
  10. 10. Pestov A.V., Slepukhin P.A., Koryakova O.V. et al. // Russ. J. Coord. Chem. 2014. V. 40. № 4. P. 216. https://doi.org/10.1134/S107032841404006X
  11. 11. Ulyyanova M.I., Baskakova S.A., Aksenova T.V. et al. // Russ. J. Coord. Chem. 2015. V. 41. № 4. P. 240. https://doi.org/10.1134/S1070328415040090
  12. 12. Zemlyakov E.O., Pestov A.V., Slepukhin P.A. et al. // Russ. J. Coord. Chem. 2018. V. 44. № 11. P. 667. https://doi.org/10.1134/S107032841811009X
  13. 13. Землякова Е.О., Халибуллина Л.А., Пузырев Н.С. и др. // Коорд. химия. 2023. Т. 49. № 7. C. 441. https://doi.org/10.31857/S0132344X2260045X
  14. 14. Solov'ev V.P., Tsivadze A.Yu. // Prot. Met. Phys. Chem. Surf. 2015. V. 51. № 1. P. 1. https://doi.org/10.1134/S2070205115010153
  15. 15. https://chemaxon.com/marvin (accessed July 28, 2023)
  16. 16. Szegedi J., Csizmada F. // Prediction of dissociation constant using microconstants. 2004. https://docs.chemaxon.com/display/docs/attachments/attachments_1814016_1_Prediction_of_dissociation_constant_using_microconstants.pdf (accessed September 8, 2023).
  17. 17. Szegedi J., Csizmada F. // A method for calculating the pKa values of small and large molecules. 2007. https://docs.chemaxon.com/display/docs/attachments/attachments_1814017_1_Calculating_pKa_values_of_small_and_large_molecules.pdf (accessed September 8, 2023).
  18. 18. Sovago I., Kiss T., Gergely A. // Pure Appl. Chem. 1993. V. 65. № 5. P. 1029. https://doi.org/10.1351/pac199365051029
  19. 19. Kotov A.V. // J. Anal. Chem. 1988. V. 43. № 5. P. 937.
  20. 20. Chaberek S., Martell A.E. // J. Am. Chem. Soc. 1954. V. 76. № 1. P. 215. https://doi.org/10.1021/ja016304055
  21. 21. Бек М., Надюпа Н. // Исследование комплексообразования новейшими методами. М.: Мир, 1989.
  22. 22. Courtney R.C., Gustafson R.L., Chaberek S. et al. // J. Am. Chem. Soc. 1959. V. 81. № 3. P. 519. https://doi.org/10.1021/ja01512004
  23. 23. Chaberek S., Gustafson R.L., Courtney R.C. et al. // J. Am. Chem. Soc. 1959. V. 81. № 3. P. 515. https://doi.org/10.1021/ja01512003
  24. 24. Courtney R.C., Gustafson R.L., Chaberek S. et al. // J. Am. Chem. Soc. 1958. V. 80. № 9. P. 2121. https://doi.org/10.1021/ja01542025
  25. 25. Martell A.E., Chaberek S., Courtney R.C. et al. // J. Am. Chem. Soc. 1957. V. 79. № 12. P. 3036. https://doi.org/10.1021/ja015694014
  26. 26. Irving H., Williams R.J.P. // J. Chem. Soc. (Resumed). 1953. P. 3192. https://doi.org/10.1039/jr9530003192
  27. 27. Chaberek S., Courtney R.C., Martell A.E. // J. Am. Chem. Soc. 1952. V. 74. № 20. P. 5057. https://doi.org/10.1021/ja01140a019
  28. 28. Heydavuna J.K., Fleemos A.B., Баранов А.В. и др. // Аналитика и контроль. 2011. Т. 15. № 2. С. 238.
  29. 29. Pestov A.V., Slepukhin P.A., Charushin V.N. // Russ. Chem. Rev. 2015. V. 84. № 3. P. 310. https://doi.org/10.1070/RCR4461
  30. 30. Chaberek S., Martell A.E. // J. Am. Chem. Soc. 1952. V. 74. № 20. P. 5052. https://doi.org/10.1021/ja01140a018
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library