- PII
- 10.31857/S0044457X25040118-1
- DOI
- 10.31857/S0044457X25040118
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 4
- Pages
- 575-582
- Abstract
- By the method of alkalinetric titration of aqueous solutions with pH-potentiometric indication at I = 0.1 mol/dm3 (KCl/KNO3) and t = 25 ± 1°C the acid dissociation constants of functional groups in the composition of a new reagent N-(2-hydroxyethyl)iminodipropionic acid pKa0 = 2.87 ± 0.02, pKa1 = 4.00 ± 0.02 and pKa2 = 9.25 ± 0.01. The complexation of the reagent with transition metal ions was studied. It is shown that N-functionalization of iminodipropionic acid by introduction of 2-hydroxyethyl substituent leads to a significant decrease in stability of complexes with copper(II) and nickel(II) ions, with cobalt(II), zinc(II) and cadmium(II) ions the stability of complexes does not significantly increase. Relatively high stability is characterized by complexes with silver(I) ions. Based on the obtained data, assumptions about the structure of the studied complexes were made.
- Keywords
- иминодипропионовая кислота катионы 3d-металлов комплексообразование pH-потенциометрия
- Date of publication
- 22.01.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 2
References
- 1. Kagoshima Y., Tokumitsu A., Masuda T. et al. // J. Antibiot. 2019. V. 72. № 12. P. 956. https://doi.org/10.1038/s41429-019-0235-3
- 2. Shurpik D.N., Aleksandrova Yu.I., Stoikov I.I. // Russ. J. Gen. Chem. 2018. V. 88. № 12. P. 2518. https://doi.org/10.1134/S1070363218120101
- 3. Kotodynska D. // Environ. Sci. Pollut. Res. 2013. V. 20. № 9. P. 5939. https://doi.org/10.1007/s11356-013-1576-2
- 4. Pinto I.S.S., Neto I.F.F., Soares H.M.V.M. // Environ. Sci. Pollut. Res. 2014. V. 21. № 20. P. 11893. https://doi.org/10.1007/s11356-014-2592-6
- 5. Zharkov G.P., Filimonova O.V., Petrova Yu.S. et al. // Russ. Chem. Bull. 2022. V. 71. № 1. P. 152. https://doi.org/10.1007/s11172-022-3389-2
- 6. Жарков Г.П., Буева Е.И., Филамонова О.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 4. C. 537. https://doi.org/10.31857/S0044457X22601791
- 7. Жарков Г.П., Филамонова О.В., Петрова Ю.С. и др. // Журн. неорган. химии. 2023. Т. 68. № 8. C. 1059. https://doi.org/10.31857/S0044457X22601218
- 8. Molochnikov L.S., Pestov A.V., Slepukhin P.A. et al. // Russ. J. Gen. Chem. 2009. V. 79. № 6. P. 1133. https://doi.org/10.1134/S1070363209060176
- 9. Pestov A.V., Slepukhin P.A., Yatluk Yu.G. // Russ. J. Coord. Chem. 2011. V. 37. № 8. P. 619. https://doi.org/10.1134/S1070328411070116
- 10. Pestov A.V., Slepukhin P.A., Koryakova O.V. et al. // Russ. J. Coord. Chem. 2014. V. 40. № 4. P. 216. https://doi.org/10.1134/S107032841404006X
- 11. Ulyyanova M.I., Baskakova S.A., Aksenova T.V. et al. // Russ. J. Coord. Chem. 2015. V. 41. № 4. P. 240. https://doi.org/10.1134/S1070328415040090
- 12. Zemlyakov E.O., Pestov A.V., Slepukhin P.A. et al. // Russ. J. Coord. Chem. 2018. V. 44. № 11. P. 667. https://doi.org/10.1134/S107032841811009X
- 13. Землякова Е.О., Халибуллина Л.А., Пузырев Н.С. и др. // Коорд. химия. 2023. Т. 49. № 7. C. 441. https://doi.org/10.31857/S0132344X2260045X
- 14. Solov'ev V.P., Tsivadze A.Yu. // Prot. Met. Phys. Chem. Surf. 2015. V. 51. № 1. P. 1. https://doi.org/10.1134/S2070205115010153
- 15. https://chemaxon.com/marvin (accessed July 28, 2023)
- 16. Szegedi J., Csizmada F. // Prediction of dissociation constant using microconstants. 2004. https://docs.chemaxon.com/display/docs/attachments/attachments_1814016_1_Prediction_of_dissociation_constant_using_microconstants.pdf (accessed September 8, 2023).
- 17. Szegedi J., Csizmada F. // A method for calculating the pKa values of small and large molecules. 2007. https://docs.chemaxon.com/display/docs/attachments/attachments_1814017_1_Calculating_pKa_values_of_small_and_large_molecules.pdf (accessed September 8, 2023).
- 18. Sovago I., Kiss T., Gergely A. // Pure Appl. Chem. 1993. V. 65. № 5. P. 1029. https://doi.org/10.1351/pac199365051029
- 19. Kotov A.V. // J. Anal. Chem. 1988. V. 43. № 5. P. 937.
- 20. Chaberek S., Martell A.E. // J. Am. Chem. Soc. 1954. V. 76. № 1. P. 215. https://doi.org/10.1021/ja016304055
- 21. Бек М., Надюпа Н. // Исследование комплексообразования новейшими методами. М.: Мир, 1989.
- 22. Courtney R.C., Gustafson R.L., Chaberek S. et al. // J. Am. Chem. Soc. 1959. V. 81. № 3. P. 519. https://doi.org/10.1021/ja01512004
- 23. Chaberek S., Gustafson R.L., Courtney R.C. et al. // J. Am. Chem. Soc. 1959. V. 81. № 3. P. 515. https://doi.org/10.1021/ja01512003
- 24. Courtney R.C., Gustafson R.L., Chaberek S. et al. // J. Am. Chem. Soc. 1958. V. 80. № 9. P. 2121. https://doi.org/10.1021/ja01542025
- 25. Martell A.E., Chaberek S., Courtney R.C. et al. // J. Am. Chem. Soc. 1957. V. 79. № 12. P. 3036. https://doi.org/10.1021/ja015694014
- 26. Irving H., Williams R.J.P. // J. Chem. Soc. (Resumed). 1953. P. 3192. https://doi.org/10.1039/jr9530003192
- 27. Chaberek S., Courtney R.C., Martell A.E. // J. Am. Chem. Soc. 1952. V. 74. № 20. P. 5057. https://doi.org/10.1021/ja01140a019
- 28. Heydavuna J.K., Fleemos A.B., Баранов А.В. и др. // Аналитика и контроль. 2011. Т. 15. № 2. С. 238.
- 29. Pestov A.V., Slepukhin P.A., Charushin V.N. // Russ. Chem. Rev. 2015. V. 84. № 3. P. 310. https://doi.org/10.1070/RCR4461
- 30. Chaberek S., Martell A.E. // J. Am. Chem. Soc. 1952. V. 74. № 20. P. 5052. https://doi.org/10.1021/ja01140a018