- PII
- 10.31857/S0044457X24120201-1
- DOI
- 10.31857/S0044457X24120201
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 12
- Pages
- 1882-1891
- Abstract
- The possibility of synthesis of Nb2AlC MAX-phase composition at varying temperature (900–1250℃) and molar ratio of initial reagents (powders of niobium, aluminum, carbon, as well as KBr salt, which performed a protective function in obtaining the target compound) was studied. By XRD it was found that at low synthesis temperatures (900–1100℃) only intermediate products are obtained, and at the synthesis temperature of 900℃ metallic niobium is also present. SEM and EDX-mapping data confirm the formation of MAX-phase at higher synthesis temperatures of 1200 and 1250℃. The effectiveness of decreasing the content of carbon in the initial mixture and increasing the aluminum content is shown. The thermal behavior in air current of the products obtained at temperatures of 900 and 1250℃ was studied.
- Keywords
- МАХ-фаза синтез в расплаве соли
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Xue Y., Wang C., Zeng Q. et al. // Tribology International. 2023. V. 178. P. 108009. https://doi.org/10.1016/j.triboint.2022.108009
- 2. Magnus C. // Wear. 2023. V 516-517. P. 204588. https://doi.org/10.1016/j.wear.2022.204588
- 3. Wang S., Ma J., Zhu S. et al. // Mater. Des. 2015. V. 67. P. 188. https://doi.org/10.1016/j.matdes.2014.11.043
- 4. Gupta S., Filimonov D., Palanisamy T. et al. // Wear. 2008. V. 265. № 3-4. P. 560. https://doi.org/10.1016/j.wear.2007.11.018
- 5. Gupta S., Barsoum M.W. // Wear. 2011. V. 271. № 9-10. P. 1878. https://doi.org/10.1016/j.wear.2011.01.043
- 6. Podhurska V.Y., Kuprin O.S., Chepil R.V. et al. // Mater. Sci. 2023. V. 59. № 1. P. 10. https://doi.org/10.1007/s11003-023-00737-8
- 7. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. №5. P. 705. https://doi.org/10.1134/S0036023622050187
- 8. Hettinger J.D., Lofland S.E., Finkel P. et al. // Phys. Rev. B. 2005. V. 72. № 11. P. 115120. https://doi.org/10.1103/PhysRevB.72.115120
- 9. Lofland S.E., Hettinger J.D., Harrell K. et al. // Appl. Phys. Lett. 2004. V. 84. № 4. P. 508. https://doi.org/10.1063/1.1641177
- 10. Salama I., El-Raghy T., Barsoum M. // J. Alloys Compd. 2002. V. 347. № 1-2. P. 271. https://doi.org/10.1016/S0925-8388 (02)00756-9
- 11. Zhang W., Travitzky N., Hu C. et al. // J. Am. Ceram. Soc. 2009. V. 92. № 10. P. 2396. https://doi.org/10.1111/j.1551-2916.2009.03187.x
- 12. Yeh C.L., Kuo C.W. // J. Alloys Compd. 2010. V. 496. № 1-2. P. 566. https://doi.org/10.1016/j.jallcom.2010.02.113
- 13. Bortolozo A.D., Sant’Anna O.H., da Luz M.S. et al. // Solid State Commun. 2006. V. 139. № 2. P. 57. https://doi.org/10.1016/j.ssc.2006.05.006
- 14. Bortolozo A.D., Sant’Anna O.H., dos Santos C.A.M. et al. // Solid State Commun. 2007. V. 144. № 10-11. P. 419. https://doi.org/10.1016/j.ssc.2007.09.028
- 15. Bortolozo A.D., Fisk Z., Sant’Anna O.H. et al. // Physica C: Superconductivity. 2009. V. 469. № 7-8. P. 256. https://doi.org/10.1016/j.physc.2009.02.005
- 16. Medkour Y., Bouhemadou A., Roumili A. // Solid State Commun. 2008. V. 148. № 9-10. P. 459. https://doi.org/10.1016/j.ssc.2008.09.006
- 17. Bouhemadou A., Khenata R. // J. Appl. Phys. 2007. V. 102. №4. https://doi.org/10.1063/1.2773634
- 18. Chen J.X., Zhou Y.C. // Scripta Mater. 2004. V. 50. № 6. P. 897. https://doi.org/10.1016/j.scriptamat.2003.12.002
- 19. Schuster J.C., Nowotny H. // Int. J. Mater. Res. 1980. V. 71. №6. P. 341. https://doi.org/10.1515/ijmr-1980-710601
- 20. Miloserdov P.A., Gorshkov V.A., Kovalev I.D. et al. // Ceram. Int. 2019. V. 45. № 2. P. 2689. https://doi.org/10.1016/j.ceramint.2018.10.198
- 21. Scabarozi T.H., Roche J., Rosenfeld A. et al. // Thin Solid Films. 2009. V. 517. № 9. P. 2920. https://doi.org/10.1016/j.tsf.2008.12.047
- 22. Shang L., to Baben M., Pradeep K.G. et al. // J. Eur. Ceram. Soc. 2017. V. 37. № 1. P. 35. https://doi.org/10.1016/j.jeurceramsoc.2016.08.005
- 23. Li Y., Qian Y., Zhao G. et al. // Ceram. Int. 2017. V. 43. № 8. P. 6622. https://doi.org/10.1016/j.ceramint.2017.02.033
- 24. Wilhelmsson O., Rasander M., Carlsson M. et al. // Adv. Funct. Mater. 2007. V. 17. № 10. P. 1611. https://doi.org/10.1002/adfm.200600724
- 25. Eklund P., Beckers M., Jansson U. et al. // Thin Solid Films. 2010. V. 518. № 8. P. 1851. https://doi.org/10.1016/j.tsf.2009.07.184
- 26. Hopfeld M., Grieseler R., Vogel A. et al. // Surf. Coat. Technol. 2014. V. 257. P. 286. https://doi.org/10.1016/j.surfcoat.2014.08.034
- 27. Zhou W., Li K., Zhu J. et al. // J. Phys. Chem. Solids. 2018. V. 120. P. 218. https://doi.org/10.1016/j.jpcs.2018.04.029
- 28. Zhou W.B., Mei B.C., Zhu J.Q. // Mater. Lett. 2005. V. 59. № 12. P. 1547. https://doi.org/10.1016/j.matlet.2005.01.019
- 29. Zhou W., Mei B., Zhu J. // Ceram. Int. 2007. V. 33. № 7. P. 1399. https://doi.org/10.1016/j.ceramint.2006.04.018
- 30. Hu C., Sakka Y., Tanaka H. et al. // J. Alloys Compd. 2009. V. 487. № 1-2. P. 675. https://doi.org/10.1016/j.jallcom.2009.08.036
- 31. Shein I.R., Ivanovskii A.L. // Phys. B: Condens. Matter. 2013. V. 410. P. 42. https://doi.org/10.1016/j.physb.2012.10.036
- 32. Tan L., Yang S. // JOM. 2013. V. 65. № 2. P. 326. https://doi.org/10.1007/s11837-012-0548-1
- 33. Hu Y., Yang X., Li L. et al. // Optik. 2022. V. 256. P. 168743. https://doi.org/10.1016/j.ijleo.2022.168743
- 34. Hu Y., Yang W., Qi T. et al. // Optics Laser Technol. 2023. V. 161. P. 109116. https://doi.org/10.1016/j.optlastec.2023.109116
- 35. Stumpf M., Fey T., Kakimoto K. et al. // Ceram. Int. 2018. V. 44. № 16. P. 19352. https://doi.org/10.1016/j.ceramint.2018.07.164
- 36. Boatemaa L., Bosch M., Farle A. et al. // J. Am. Ceram. Soc. 2018. V. 101. № 12. P. 5684. https://doi.org/10.1111/jace.15793
- 37. Ma J., Li F., Cheng J. et al. // Tribology Lett. 2013. V. 50. № 3. P. 323. https://doi.org/10.1007/s11249-013-0126-x
- 38. Shi X., Wang M., Xu Z. et al. // Mater. Des. 2013. V. 45. P. 365. https://doi.org/10.1016/j.matdes.2012.08.069
- 39. Stumpf M., Kollner D., Biggemann J. et al. // Adv. Eng. Mater. 2019. V. 21. № 6. https://doi.org/10.1002/adem.201900048
- 40. Hadi M.A., Christopoulos S.-R.G., Chroneos A. et al. // Mater. Today Commun. 2020. V. 25. P. 101499. https://doi.org/10.1016/j.mtcomm.2020.101499
- 41. Saad Essaoud S., Jbara A.S. // Indian J. Phys. 2023. V. 97. № 1. P. 105. https://doi.org/10.1007/s12648-022-02386-0
- 42. Badie S., Dash A., Sohn Y.J. et al. // J. Am. Ceram. Soc. 2021. V. 104. № 4. P. 1669. https://doi.org/10.1111/jace.17582
- 43. Zhang Z., Zhou Y., Wu S. et al. // Ceram. Int. 2023. V. 49. № 22. P. 36942. https://doi.org/10.1016/j.ceramint.2023.09.025
- 44. Simonenko E.P., Mokrushin A.S., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624600850
- 45. Zhang H., Hu T., Wang X. et al. // Scientific Rep. 2015. V. 5. № 1. P. 14192. https://doi.org/10.1038/srep14192
- 46. Fujii R., Gotoh Y., Liao M.Y. et al. // Vacuum. 2006. V. 80. № 7. P. 832. https://doi.org/10.1016/j.vacuum.2005.11.030
- 47. Mansfeldova V., Zlamalova M., Tarabkova H. et al. // J. Phys. Chem. C. 2021. V. 125. № 3. P. 1902. https://doi.org/10.1021/acs.jpcc.0c10519
- 48. Tippey K.E., Afanador R., Doleans M. et al. // J. Phys.: Conference Series 2018. V. 1067. P. 082010. https://doi.org/10.1088/1742-6596/1067/8/082010