RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

CHANGES IN THE EXCITED STATE RELAXATION PATHWAY OF MONORUTHENIUM (II) BIPYRIDINE COMPLEXES WITH SUBSTITUTED IMIDAZO[4,5-f][1,10]PHENANTHROLINE LIGANDS UPON INTRODUCTION OF THE SECOND METAL CATION INTO COMPLEX COMPOSITION

PII
10.31857/S0044457X24120133-1
DOI
10.31857/S0044457X24120133
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 12
Pages
1805-1814
Abstract
A new type of heterobimetallic ruthenium-containing complexes based on thiophene-, pyridineand phenanthroline-containing ligand has been obtained and investigated. In the studied complexes, ruthenium(II) is bound to the 1,10-phenanthroline moiety and has a marked effect on the optical properties of the complex. The second metal cation is coordinated on the pyridine residue within the phenanthroline ligand. The coordination of the second cation results in a significant quenching of luminescence as a result of redistribution of electron density on the LUMO. It is also shown that the removal of the bridging thiophene fragment from the ligand composition significantly reduces the nucleophilicity of the pyridine nitrogen atom, and the latter loses the ability to coordinate doubly charged cations.
Keywords
биметаллический комплекс имидазо[4,5-f][1,10]фенантролины комплекс рутения(II) комплексообразование люминесценция
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Balzani V., Bergamini G., Marchioni F. et al. // Coord. Chem. Rev. 2006. V. 250. № 11. P. 1254. https://doi.org/10.1016/j.ccr.2005.11.013
  2. 2. Andreiadis E.S., Chavarot-Kerlidou M., Fontecave M. et al. // Photochem. and Photobiol. 2011. V. 87. № 5. P. 946. https://doi.org/10.1111/j.1751-1097.2011.00966.x
  3. 3. Rau S., Zheng S. // Curr. Med. Chem. 2012. V. 12. № 3. P. 197. https://doi.org/10.2174/156802612799078946
  4. 4. Liu J., Zhang C., Rees T.W. et al. // Coord. Chem. Rev. 2018. V. 363. P. 17. https://doi.org/10.1016/j.ccr.2018.03.002
  5. 5. Kal’tenberg A.A., Bashilova A.D., Somov N.V. et al. // Russ. J. Inorg. Chem. 2023. V. 12. P. 1247. https://doi.org/10.1134/S0036023623700286
  6. 6. Alreja P., Kaur N. // RSC Adv. 2016. V. 6. № 28. P. 23169. https://doi.org/10.1039/C6RA00150E
  7. 7. Patra S., Boricha V.P., Sreenidhi K.R. et al. // Inorg. Chim. Acta. 2010. V. 363. P. 1639. https://doi.org/10.1016/j.ica.2010.01.003
  8. 8. Schmittel M., Lin H.W. // Angew. Chem., Int. Ed. 2007. V. 119. № 6. P. 911. https://doi.org/10.1002/ange.200603362
  9. 9. Sheet S.K., Sen B., Thounaojam R. et al. // Inorg. Chem. 2017. V. 56. № 3. P. 1249. https://doi.org/10.1021/acs.inorgchem.6b02343
  10. 10. Khatua S., Schmittel M. // Org. Lett. 2013. V. 15. № 17. P. 4422. https://doi.org/10.1021/ol401970n
  11. 11. Cheng F., He C., Ren M. et al. // Spectrochim. Acta, Part A. 2015. V. 136. P. 845. https://doi.org/10.1016/j.saa.2014.09.103
  12. 12. Cheng F., Tang N., Miao K. et al. // Z. Anorg. Allg. Chem. 2014. V. 640. № 8. P. 1816. https://doi.org/10.1002/zaac.201300662
  13. 13. Tokarev S.D., Botezatu A., Fedorov Y.V. et al. // Chem. Heterocycl. Compd. 2021. V. 57. P. 799. https://doi.org/10.1007/s10593-021-02983-722
  14. 14. Nasriddinov A., Tokarev S., Platonov V. et al. // Molecules. 2022. V. 27. P. 5058. https://doi.org/10.3390/molecules27165058
  15. 15. Lukovskaya E.V., Sotnikova Y.A., Bobyleva A.A. et al. // Mendeleev Commun. 2016. V. 3. № 26. P. 202. https://doi.org/10.1016/j.mencom.2016.04.007
  16. 16. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 16. Revision C.01, Inc., Wallingford CT, 2016.
  17. 17. Han G., Li G., Huang J. et al. // Nat. Commun. 2022. V. 13. № 1. P. 2288. https://doi.org/10.1038/s41467-022-29981-3
  18. 18. Halpin Y., Logtenberg H., Cleary L. et al. // Eur. J. Inorg. Chem. 2013. V. 24. P. 4291. https://doi.org/10.1002/ejic.201300366
  19. 19. Ioachim E., Medlycott E.A., Hanan G.S. et al. // Inorg. Chim. Acta. 2006. V. 359. № 3. P. 766. https://doi.org/10.1016/j.ica.2005.03.057
  20. 20. Monti F., Hahn U., Pavoni E. et al. // Polyhedron. 2014. V. 82. P. 122. https://doi.org/10.1016/j.poly.2014.05.030
  21. 21. Al-Ghezi B.S.M., Khasanov A.F., Starnovskaya E.S. et al. // Russ. J. Gen. Chem. 2023. V. 93. P. 285. https://doi.org/10.1134/S1070363223140372
  22. 22. Tang Y., Tehan E.C., Tao Z. et al. // Anal. Chem. 2003. V. 75. № 10. P. 2407. https://doi.org/10.1016/j.poly.2014.05.030
  23. 23. Tokarev S., Rumyantseva M., Nasriddinov A. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. № 15. P. 8146. https://doi.org/10.1039/C9CP07016H
  24. 24. Li J., Lu C.H., Zhao B.B. et al. // Beilstein J. Org. Chem. 2008. V. 4. № 1. P. 46. https://doi.org/10.3762/bjoc.4.46
  25. 25. Juris A., Balzani V., Barigelletti F. et al. // Coord. Chem. Rev. 1988. V. 84. P. 85. https://doi.org/10.1016/0010-8545 (88)80032-8
  26. 26. Fedorov Y.V., Fedorova O.A., Andryukhina E.N. et al. // New J. Chem. 2003. V. 27. № 2. P. 280. https://doi.org/10.1039/B205305E
  27. 27. Reddy G.S., Hobgood R.T., Goldstein J.H. // J. Am. Chem. Soc. 1962. V. 84. № 3. P. 336. https://doi.org/10.1021/ja00862a004
  28. 28. Tian G., Han Y.Z., Yang Q. // Results Chem. 2023. V. 5. P. 100899. https://doi.org/10.1016/j.rechem.2023.100899
  29. 29. Han Y.Z., Tian G., Yang Q. // Inorg. Chem. Commun. 2023. V. 155. P. 111105. https://doi.org/10.1016/j.inoche.2023.111105
  30. 30. Roque III J.A., Cole H.D. et al. // J. Am. Chem. Soc. 2022. V. 144. № 18. P. 8317. https://doi.org/10.1021/jacs.2c02475
  31. 31. Cole H.D., Vali A. et al. // Inorg. Chem. 2024. V. 63. № 21. https://doi.org/10.1021/acs.inorgchem.3c04382
  32. 32. Bissell R.A., de Silva A.P., Gunaratne H.Q.N. et al. // Chem. Soc. Rev. 1992. V. 21. P. 187. https://doi.org/10.1039/CS9922100187
  33. 33. De Silva A.P., Gunaratne H.Q.N., Gunnlaugsson T. et al. // Chem. Rev. 1997. V. 97. P. 1515. https://doi.org/10.1021/cr960386p
  34. 34. Zhao Q., Li F., Huang C. // Chem. Soc. Rev. 2010. V. 39. P. 3007. https://doi.org/10.1039/B915340C
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library