- PII
- 10.31857/S0044457X24080122-1
- DOI
- 10.31857/S0044457X24080122
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 8
- Pages
- 1201-1210
- Abstract
- The microstructure evolution of silver nanowires during their formation by the polyol method at 170°C has been studied. UV-Vis spectrophotometry shows significant changes in the shape of the absorption band associated with the surface plasmon resonance of the resulting silver nanostructures. The X-ray diffraction analysis data indicate that all the obtained nanostructures have face-centered cubic lattice of silver. The effect of heat treatment duration on the I(111)/I(200) ratio was studied. The use of scanning electron microscopy revealed the influence of synthesis conditions on the microstructural features of the particles formed. In particular, after 45 min from the beginning of polyol synthesis a material characterized by an increased concentration of longer nanowires (up to 25 μm in length) is formed, and in individual cases one-dimensional structures up to 70 μm in length are found. The nanowires obtained are characterized by a remarkably low value of diameter (35–40 nm). The time when the process of silver nanowires destruction is intensified and the concentration of micro-rods and zero-dimensional particles increases has also been determined. It is assumed that individual nanowires in the course of heat treatment of the reaction system are connected by side faces, which leads to their recrystallization leading to the appearance of one-dimensional structures with a larger diameter and their subsequent degradation due to emerging defects.
- Keywords
- полиольный синтез серебряные нанопроволоки одномерные наноструктуры поверхностный плазмонный резонанс дисперсные системы прозрачные электроды
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Guo C.F., Ren Z. // Mater. Today. 2015. V. 18. № 3. P. 143. https://doi.org/10.1016/j.mattod.2014.08.018
- 2. Kim J., da Silva W.J., bin Mohd Yusoff A.R. et al. // Sci. Rep. 2016. V. 6. № 1. P. 19813. https://doi.org/10.1038/srep19813
- 3. Yang C., Gu H., Lin W. et al. // Adv. Mater. 2011. V. 23. № 27. P. 3052. https://doi.org/10.1002/adma.201100530
- 4. Zeng L., Zhao T.S., An L. // J. Mater. Chem. A. 2015. V. 3. № 4. P. 1410. https://doi.org/10.1039/C4TA05005C
- 5. Du H., Pan Y., Zhang X. et al. // Nanoscale Adv. 2019. V. 1. № 1. P. 140. https://doi.org/10.1039/C8NA00110C
- 6. Du B., Shen C., Wang T. et al. // Electrochim. Acta. 2023. V. 439. P. 141690. https://doi.org/10.1016/j.electacta.2022.141690
- 7. Xie C., Xiao C., Fang J. et al. // Nano Energy. 2023. V. 107. P. 108153. https://doi.org/10.1016/j.nanoen.2022.108153
- 8. Huš M., Hellman A. // ACS Catal. 2019. V. 9. № 2. P. 1183. https://doi.org/10.1021/acscatal.8b04512
- 9. Liu Q., Zhang X.-G., Du Z.-Y. et al. // Sci. China Chem. 2023. V. 66. № 1. P. 259. https://doi.org/10.1007/s11426-022-1460-7
- 10. Nair A.K., Thazhe veettil V., Kalarikkal N. et al. // Sci. Rep. 2016. V. 6. № 1. P. 37731. https://doi.org/10.1038/srep37731
- 11. Zhang Q., Jiang D., Xu C. et al. // Sens. Actuators, B: Chem. 2020. V. 320. P. 128325. https://doi.org/10.1016/j.snb.2020.128325
- 12. Chu S., Nakkeeran K., Abobaker A.M. et al. // IEEE Sens. J. 2021. V. 21. № 1. P. 76. https://doi.org/10.1109/JSEN.2020.2981897
- 13. Hao T., Wang S., Xu H. et al. // Chem. Eng. J. 2021. V. 426. P. 130840. https://doi.org/10.1016/j.cej.2021.130840
- 14. Pan X.-T., Liu Y.-Y., Qian S.-Q. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 16. P. 19023. https://doi.org/10.1021/acsami.1c02332
- 15. Simonenko N.P., Musaev A.G., Simonenko T.L. et al. // Nanomaterials. 2021. V. 12. № 1. P. 136. https://doi.org/10.3390/nano12010136
- 16. Lee D.J., Oh Y., Hong J.-M. et al. // Sci. Rep. 2018. V. 8. № 1. P. 14170. https://doi.org/10.1038/s41598-018-32590-0
- 17. Wang Y.H., Xiong N.N., Li Z.L. et al. // J. Mater. Sci.: Mater. Electron. 2015. V. 26. № 10. P. 7927. https://doi.org/10.1007/s10854-015-3446-9
- 18. Jeong J.-M., Sohn M., Bang J. et al. // Sci. Rep. 2023. V. 13. № 1. P. 14354. https://doi.org/10.1038/s41598-023-41646-9
- 19. Ha H., Amicucci C., Matteini P. et al. // Colloid Interface Sci. Commun. 2022. V. 50. P. 100663. https://doi.org/10.1016/j.colcom.2022.100663
- 20. Xiao N., Chen Y., Weng W. et al. // Nanomaterials. 2022. V. 12. № 15. P. 2681. https://doi.org/10.3390/nano12152681
- 21. Liao Q., Hou W., Zhang J. et al. // Coatings. 2022. V. 12. № 11. P. 1756. https://doi.org/10.3390/coatings12111756
- 22. Jo H.-A., Jang H.-W., Hwang B.-Y. et al. // RSC Adv. 2016. V. 6. № 106. P. 104273. https://doi.org/10.1039/C6RA21349A
- 23. da Silva R.R., Yang M., Choi S.-I. et al. // ACS Nano. 2016. V. 10. № 8. P. 7892. https://doi.org/10.1021/acsnano.6b03806
- 24. Coskun S., Aksoy B., Unalan H.E. // Cryst. Growth Des. 2011. V. 11. № 11. P. 4963. https://doi.org/10.1021/cg200874g
- 25. Jiu J., Araki T., Wang J. et al. // J. Mater. Chem. A. 2014. V. 2. № 18. P. 6326. https://doi.org/10.1039/C4TA00502C
- 26. Fahad S., Yu H., Wang L. et al. // J. Mater. Sci. 2019. V. 54. № 2. P. 997. https://doi.org/10.1007/s10853-018-2994-9
- 27. Zhang P., Wyman I., Hu J. et al. // Mater. Sci. Eng., B. 2017. V. 223. P. 1. https://doi.org/10.1016/j.mseb.2017.05.002
- 28. Sun Y., Xia Y. // Adv. Mater. 2002. V. 14. № 11. P. 833. https://doi.org/10.1002/1521-4095 (20020605) 14:113.0.CO;2-K
- 29. Sun Y., Yin Y., Mayers B.T. et al. // Chem. Mater. 2002. V. 14. № 11. P. 4736. https://doi.org/10.1021/cm020587b
- 30. Sun Y., Gates B., Mayers B. et al. // Nano Lett. 2002. V. 2. № 2. P. 165. https://doi.org/10.1021/nl010093y
- 31. Lu J., Liu D., Dai J. // J. Mater. Sci.: Mater. Electron. 2019. V. 30. № 16. P. 15786. https://doi.org/10.1007/s10854-019-01964-z
- 32. Bergin S.M., Chen Y.-H., Rathmell A.R. et al. // Nanoscale. 2012. V. 4. № 6. P. 1996. https://doi.org/10.1039/c2nr30126a
- 33. Ashkarran A.A., Derakhshi M. // J. Clust. Sci. 2015. V. 26. № 5. P. 1901. https://doi.org/10.1007/s10876-015-0887-5
- 34. Gebeyehu M.B., Chala T.F., Chang S.-Y. et al. // RSC Adv. 2017. V. 7. № 26. P. 16139. https://doi.org/10.1039/C7RA00238F
- 35. Ma J., Zhan M. // RSC Adv. 2014. V. 4. № 40. P. 21060. https://doi.org/10.1039/c4ra00711e
- 36. Guo Y., Hu Y., Luo X. et al. // Inorg. Chem. Commun. 2021. V. 128. P. 108558. https://doi.org/10.1016/j.inoche.2021.108558
- 37. Lin J.-Y., Hsueh Y.-L., Huang J.-J. // J. Solid State Chem. 2014. V. 214. P. 2. https://doi.org/10.1016/j.jssc.2013.12.017
- 38. Teymouri Z., Naji L., Fakharan Z. // Org. Electron. 2018. V. 62. P. 621. https://doi.org/10.1016/j.orgel.2018.06.039
- 39. Hemmati S., Harris M.T., Barkey D.P. // J. Nanomater. 2020. V. 2020. P. 1. https://doi.org/10.1155/2020/9341983
- 40. Ran Y., He W., Wang K. et al. // Chem. Commun. 2014. V. 50. № 94. P. 14877. https://doi.org/10.1039/C4CC04698F
- 41. Madeira A., Papanastasiou D.T., Toupance T. et al. // Nanoscale Adv. 2020. V. 2. № 9. P. 3804. https://doi.org/10.1039/D0NA00392A
- 42. Sim H., Kim C., Bok S. et al. // Nanoscale. 2018. V. 10. № 25. P. 12087. https://doi.org/10.1039/C8NR02242A
- 43. Araki T., Jiu J., Nogi M. et al. // Nano Res. 2014. V. 7. № 2. P. 236. https://doi.org/10.1007/s12274-013-0391-x
- 44. Zhang B., Dang R., Cao Q. et al. // J. Nanomater. 2019. V. 2019. P. 1. https://doi.org/10.1155/2019/8646385
- 45. Ding H., Zhang Y., Yang G. et al. // RSC Adv. 2016. V. 6. № 10. P. 8096. https://doi.org/10.1039/C5RA25474D
- 46. Li Y., Li Y., Fan Z. et al. // ACS Omega. 2020. V. 5. № 29. P. 18458. https://doi.org/10.1021/acsomega.0c02156
- 47. Bari B., Lee J., Jang T. et al. // J. Mater. Chem. A. 2016. V. 4. № 29. P. 11365. https://doi.org/10.1039/C6TA03308C
- 48. Yang Z., Qian H., Chen H. et al. // J. Colloid Interface Sci. 2010. V. 352. № 2. P. 285. https://doi.org/10.1016/j.jcis.2010.08.072
- 49. Shi Y., Fang J. // J. Phys. Chem. C. 2022. V. 126. № 46. P. 19866. https://doi.org/10.1021/acs.jpcc.2c05632
- 50. Lee E.-J., Chang M.-H., Kim Y.-S. et al. // APL Mater. 2013. V. 1. № 4. P. 042118. https://doi.org/10.1063/1.4826154