- Код статьи
- 10.31857/S0044457X24080068-1
- DOI
- 10.31857/S0044457X24080068
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 69 / Номер выпуска 8
- Страницы
- 1135-1143
- Аннотация
- Станнат лютеция со структурой пирохлора получен методом твердофазного синтеза. Теплоемкость поликристаллического Lu2Sn2O7 измерена методами адиабатической и дифференциальной сканирующей калориметрии в диапазоне температур 8–1871 K. Энтропия, изменение энтальпии и приведенная энергия Гиббса Lu2Sn2O7 рассчитаны на основании сглаженных значений теплоемкости. Проведена оценка энергии Гиббса образования DfG° станната лютеция из простых веществ с использованием значений DfS°(Т), полученных в настоящей работе, и значений DfH°(Т), приведенных в литературе. Методом высокотемпературной рентгеновской дифракции определена температурная зависимость параметра кубической кристаллической решетки и величина коэффициента термического расширения в интервале температур 300–1273 K.
- Ключевые слова
- станнаты лютеций теплоемкость термическое расширение
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 13
Библиография
- 1. Pruneda J.M., Artacho E. // Phys. Rev. B. 2005. V. 72. P. 085107. https://doi.org/10.1103/PhysRevB.72.085107
- 2. Boujnah M., Chavira E. // Optic. Mater. 2020. V. 110. P. 110499. https://doi.org/10.1016/j.optmat.2020.110499
- 3. Pirzada M., Grimes R.W., Minervini L. et al. // Solid State Ionics. 2001. V. 140. P. 201. https://doi.org/10.1016/S0167-2738 (00)00836-5
- 4. Lang M., Zhang F., Zhang J. et al. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2010. V. 268. P. 2951. https://doi.org/10.1016/j.nimb.2010.05. 016
- 5. Wang J., Xu F., Wheatley R.J. et al. // Mater. Des. 2015. V. 85. P. 423. https://doi.org/10.1016/j.matdes.2015.07.022
- 6. Vassen R., Cao X., Tietz F. et al. // J. Am. Ceram. Soc. 2000. V. 83. P. 2023. https://doi.org/10.1111/j.1151-2916.2000.tb01506.x
- 7. Feng J., Xiao B., Zhou R., Pan W. // Scripta Mater. 2013. V. 68 P. 727. https://doi.org/10.1016/j.scriptamat.2013.01.010
- 8. Joulia A., Vardelle M., Rossignol S. // J. Eur. Ceram. Soc. 2013. V. 33. P. 2633. https://doi.org/10.1016/j.jeurceramsoc.2013.03.030
- 9. Wang Y., Gao Bo, Wang Q. et al. // J. Mater. Sci. 2020. V. 55. P. 15405. https://doi.org/10.1007/s10853–020–05104–5
- 10. Ashcroft A.T., Cheetham A.K., Green M.L.H. et al. // J. Chem. Soc., Chem. Commun. 1989. P. 1667. https://doi.org/10.1039/C39890001667
- 11. Srivastava A.M. // Opt. Mater. 2009. V. 31. P. 881. https://doi.org/10.1016/j.optmat.2008.10.021
- 12. Kennedy B.J., Hunter B.A., Howard C.J. // J. Solid State Chem. 1997. V. 130. P. 58. https://doi.org/10.1006/jssc.1997.7277
- 13. Brisse F., Knop O. // Can. J. Chem. 1968. V. 46. № 6. P. 859. https://doi.org/10.1139/v68–148
- 14. Vandenborre M.T., Husson E., Chatry J.P., Michel D. // J. Raman Spectrosc. 1983. V. 14. № 2. P. 63. https://doi.org/10.1002/jrs.1250140202
- 15. Chen Z.J., Xiao H.Y., Zu X.T. et al. // Comput. Mater. Sci. 2008. V. 42 P. 653. https://doi.org/10.1016/j.commatsci.2007.09.01
- 16. Whinfreyd C., Eckar O., Tauber A. // J. Am. Chem. Soc. 1960. V. 82. № 11. P. 2695. https://doi.org/10.1021/ja01496a010
- 17. Kong L., Karatchevtseva I., Blackford M.G. et al. // J. Am. Ceram. Soc. 2013. V. 96. № 9. P. 2994. https://doi.org/10.1111/jace.12409
- 18. Zhang F., Chen M., Zhang Sh. et al. // CALPHAD. 2021. V. 72. P. 102248. https://doi.org/10.1016/j.calphad.2020.102248
- 19. Рюмин М.А., Никифорова Г.Е., Тюрин А.В. и др. // Неорган. материалы. 2020. Т. 56. № 1. С. 102. https://doi.org/10.31857/S0002337X20010145
- 20. Тюрин А.В., Хорошилов А.В., Рюмин М.А. и др. // Журн. неорган. химии. 2020. Т. 60. № 12. С. 1668. https://doi.org/10.31857/S0044457 X2012020X
- 21. Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2022. Т. 67. № 11. С. 1615. https://doi.org/10.31857/S0044457X22100543
- 22. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
- 23. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Неорган. материалы. 2017. Т. 53. № 5. С. 513. https://doi.org/10.7868/S0002337X17050050
- 24. Малышев В.В., Мильнер Г.А., Соркин Е.Л., Шибакин В.Ф. // Приборы и техника эксперимента. 1985. Т. 6. С. 195.
- 25. Varushchenko R.M., Druzhinina A.I., Sorkin E.L. // J. Chem. Thermodyn. 1997. V. 29. № 6. P. 623. https://doi.org/10.1006/jcht.1996.0173
- 26. Wieser M.E. // Pure Appl. Chem. 2006. V. 78. P. 2051. https://doi.org/10.1351/pac2006781112051.
- 27. Ditmars D.A., Ishihara S., Chang S.S. et al. // J. Res. NBS. 1982. V. 87. № 2. P. 159. http://doi.org/10.6028/jres.087.012
- 28. Merkushkin A.O., Aung T., Mo Z.E. // Glass Ceram. 2011. V. 67. № 11–12. P. 347. https://doi.org/10.1007/s10717–011–9295-y
- 29. Whinfrey C.G., Tauber A. // J. Am. Chem. Soc. 1961. V. 83. № 3. P. 755.
- 30. Lobenstein H.M., Zilber R., Zmora H. // Phys. Lett. 1970. V. 33A. P. 453. https://doi.org/10.1016/0375-9601 (70)90604-3
- 31. Powell M., Sanjeewa L.D., McMillen C.D. et al. // Cryst. Growth Des. 2019. V. 19. P. 4920. https://doi.org/10.1021/acs.cgd.8b01889
- 32. Гуревич В.М., Гавричев К.С., Горбунов В.Е. и др. // Геохимия. 2004. № 10. С. 1096.
- 33. Zhang Y., Jung In-Ho. // CALPHAD. 2017. V. 58. P. 169. http://doi.org/10.1016/j.calphad.2017.07.001
- 34. Leitner J., Voňka P., Sedmidubsky D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7. https://doi.org/10.1016/j.tca.2009.08.002
- 35. Voskov A.L., Kutsenok I.B., Voronin G.F. // CALPHAD. 2018. V. 61. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
- 36. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
- 37. Печковская К.И., Никифорова Г.Е., Тюрин А.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 4. С. 476. https://doi.org/10.31857/S0044457X 22040158
- 38. Bissengaliyeva M.R., Knyazev A.V., Bespyatov M.A. et al. // J. Chem. Thermodyn. 2022. V. 165. P. 106646. https://doi.org/10.1016/ j.jct.2021.106646
- 39. Saha S., Singh S., Dkhil B. et al. // Phys. Rev. B. 2008. V. 78. P. 214102. https://doi.org/10.1103/PhysRevB.78.214102
- 40. Lian J., Helean K.B., Kennedy B.J. et al. // J. Phys. Chem. B. 2006. V. 110. P. 2343. https://doi.org/10.1021/jp055266c
- 41. Kowalski P.M. // Scripta Mater. 2020. V. 189 P. 7. https://doi.org/10.1016/j.scriptamat.2020.07.048
- 42. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
- 43. Термические константы веществ. Справочник / Под ред. Глушко В.П. М.: 1965–1982.
- 44. Konings R.J.M., Beneš O., Kovács A. et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101. http:// doi.org/10.1063/1.4825256
- 45. Feng J., Xiao B., Zhou R., Pan W. // Scripta Mater. 2013. V. 69. P. 401. http://doi.org/10.1016/j.scriptamat.2013.05.030
- 46. Zhixue Q., Chunlei W., Wei P. // Acta Mater. 2012. V. 60. P. 2939. https://doi.org/10.1016/j.actamat.2012.01.057