RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Thermal stability of (ZnS)(Ag2S)x heteronanostructures of zinc and silver sulfides

PII
10.31857/S0044457X24050192-1
DOI
10.31857/S0044457X24050192
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 5
Pages
792-800
Abstract
Heteronanostructures (ZnS)(Ag2S)x with x from 0.002 to 0.50 were synthesized by hydrochemical coprecipitation. The size of ZnS nanoparticles in the resulting heteronanostructures is 2–4 nm. Annealing of synthesized heteronanostructures (ZnS)(Ag2S)x in air at temperatures from 25 to 530°C or more leads to a change in their phase composition due to the oxidation of cubic zinc sulfide to hexagonal zinc oxide. Oxidation begins at a temperature of ~250°C, and the zinc oxide content in them after annealing at 530°C reaches ~26–30 wt.%. The size of nanoparticles of the resulting ZnO ranges from 12 to 17–25 nm. A study of the oxidation of (ZnS)(Ag2S)x heteronanostructures in air showed that the initial mass loss observed upon heating to ~120°C is due to the removal of adsorbed moisture. The subsequent weight loss that occurs upon heating from ~250 to ~430–450°C is associated with the onset of oxidation of ZnS sulfide and the formation of ZnO oxide. The greatest weight loss is observed upon heating from ~450 to ~580°C and is due to an increase in the ZnO content, partial oxidation of sulfur and its removal in the form of SO2. The oxidation stages are confirmed by the presence of maxima in the temperature dependences of ion currents corresponding to H2O, CO2 and SO2. The studied heteronanostructures are thermally stable when heated to ~200–250°C.
Keywords
сульфид цинка сульфид серебра химическое соосаждение гетеронаноструктура стабильность фазового состава оксид цинка
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Fang X., Zhai T., Gautam U.K. et al. // Progr. Mater. Sci. 2011. V. 56. № 2. P. 175. https://doi.org/10.1016/j.pmatsci.2010.10.001
  2. 2. Wang X., Huang H., Liang B. et al. // Crit. Rev. Solid State Mater. Sci. 2013. V. 38. № 1. P. 57. https://doi.org/10.1080/10408436.2012.736887
  3. 3. Садовников С.И., Ремпель А.А., Гусев А.И. // Усп. химии. 2018. Т. 87. № 4. С. 303.
  4. 4. Sadovnikov S.I. // Russ. Chem. Rev. 2019. V. 88. № 6. P. 571. https://doi.org/10.1070/RCR4867
  5. 5. Liang C.H., Terabe K., Hasegawa T., Aono M. // Nanotechnology. 2007. V. 18. № 48. P. 485202. https://doi.org/10.1088/0957-4484/18/48/485202
  6. 6. Hasegawa T., Terabe K., Tsuruoka T., Aono M. // Advanc. Mater. 2012. V. 24. № 2. P. 252. https://doi.org/10.1002/adma.201102597
  7. 7. Yang H.-Y., Zhao Y.-W., Zhang Z.-Y., Xiong H.-M., Yu S.-N. // Nanotechnology. 2013. V. 24. № 5. P. 055706. http://dx.doi.org/10.1088/0957–4484/24/5/055706
  8. 8. Lim W.P., Zhang Z., Low H.Y., Chin W.S. // Angew. Chem. Int. Ed. 2004. V. 43. № 42. P. 5685. https://doi.org/10.1002/anie.200460566
  9. 9. Kryukov A.I., Stroyuk A.L., Zin’chuk N.N. et al. // J. Mol. Catal. A: Chem. 2004. V. 221. № 1–2. P. 209. https://doi.org/10.1016/j.molcata.2004.07.009
  10. 10. Li H., Xie F., Li Wei. et al. // Catal. Surv. Asia. 2018. V. 22. № 3. P. 156. https://doi.org/10.1007/s10563-018-9249-2
  11. 11. Садовников С.И., Ищенко А.В., Вайнштейн И.А. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1183. https://doi.org/10.31857/S0044457X20090147
  12. 12. Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1967. 448 с.
  13. 13. Patnaik P. Dean’s Analytical Chemistry Handbook. New York: McGraw-Hill, 2004. 1280 p.
  14. 14. Lee P.C., Meisel D. // J. Phys. Chem. 1982. V. 86. № 17. P. 3391. https://doi.org/10.1021/j100214a025
  15. 15. Sadovnikov S.I., Gusev A.I., Gerasimov E.Yu., Rempel A.A. // Chem. Phys. Lett. 2015. V. 642. P. 17. http://dx.doi.org/10.1016/j.cplett.2015.11.004
  16. 16. X’Pert HighScore Plus. Version 2.2e (2.2.5). Netherlands.
  17. 17. Scherrer P. // Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. 1918. V. 2. P. 98–100.
  18. 18. Кривоглаз М. А. Теория рассеяния рентгеновских лучей и тепловых нейтронов реальными кристаллами. М.: Наука, 1967. 336 с.
  19. 19. Hall W.H. // Proc. Phys. Soc. London. 1949. Sect.A. V. 62. Part 11. № 359A. P. 741. https://doi.org/10.1088/0370-1298/62/11/110
  20. 20. Williamson G.K., Hall W.H. // Acta Metallurg. 1953. V. 1. № 1. P. 22. https://doi.org/10.1016/0001-6160 (53)90006-6
  21. 21. JCPDS card No. 005-0566
  22. 22. Van Aswegen J.T.S., Verleger H. // Die Naturwissenschafien. 1960. V. 47. № 6. P. 131. https://doi.org/10.1007/BF00628510
  23. 23. McMurdie H.F., Morris M.C., Evans E.H. et al. // Powder Diffraction. 1986. V. 1. № 2. P. 64. https://doi.org/10.1017/S0885715600011593
  24. 24. JCPDS card No. 36-1451
  25. 25. Xu Y.N., Ching W.Y. // Phys. Rev. B. 1993. V. 48. № 7. P. 4335.и тhttps://doi.org/10.1103/PhysRevB.48.4335
  26. 26. Blanton T., Misture S., Dontula N., Zdzieszynski Z. // Powder Diffraction. 2011. V. 26. № 2. P. 114. https://doi.org/10.1154/1.3583564
  27. 27. Corish J., O’Briain C.D. // J. Mater. Sci. 1971. V. 6. № 3. P. 252. https://doi.org/10.1007/BF00550020
  28. 28. Bärtsch M., Niederberger M. // ChemPlusChem. 2017. V. 82. № 1. P. 42. https://doi.org/10.1002/cplu.201600519
  29. 29. Sadovnikov S.I. // Mater. Sci. Semicond. Proc. 2022. V. 148. № 10. P. 106766. https://doi.org/10.1016/j.mssp.2022.106766
  30. 30. NIST Chemistry WebBook. NIST Standard Reference Database Number 69. https://doi.org/10.18434/Т4D303
  31. 31. Živković D., Sokić M., Živković Ž., Manasijević D., Lj. Balanović L., Štrbac N., Ćosović V., Boyanov B. // J. Therm. Anal. Calorim. 2013. V. 111. № 2. P. 1173. https://doi.org/10.1007/s10973-012-2300-z
  32. 32. Sadovnikov S.I., Gusev A.I. // J. Therm. Anal. Calorim. 2018. V. 131. № 2. P. 1155. https://doi.org/10.1007/s10973-017-6691-8
  33. 33. Fu Q.-S., Xue Y.-Q., Cui Z.-X., Wang M.-F. // J. Nanomater. (Hindawi). 2014. V. 2014. P. 856489. https://doi.org/10.1155/2014/856489
  34. 34. Klyushnikov A.M., Pikalov S.M., Gulyaeva R.I. // Chim. Techno Acta. 2023. V. 10 № 2. P. 202310202. https://doi.org/10.15826/chimtech.2023.10.2.02
  35. 35. Садовников С.И., Сергеева С.В. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 444. https://doi.org/10.31857/S0044457X22601936
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library