- Код статьи
- 10.31857/S0044457X24050133-1
- DOI
- 10.31857/S0044457X24050133
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 69 / Номер выпуска 5
- Страницы
- 751-756
- Аннотация
- С помощью квантово-химических методов расчета в приближении теории функционала плотности с наложением периодических граничных условий исследована структура и свойства трехмерного кристалла, состоящего из 1,6-клозо-карборана. В результате расчета энергетического спектра фононов и электронной зонной структуры установлено, что 3D-кристалл обладает структурной устойчивостью и относится к непрямозонным полупроводникам с шириной запрещенной зоны ~1.44 эВ. Согласно двум методам теоретической оценки твердости, она имеет близкие значения (21.8 и 25.2 ГПа), при этом модуль Юнга равен 97.24 и 242.90 ГПа соответственно.
- Ключевые слова
- карбораны фононный спектр электронная зонная структура полупроводники
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 12
Библиография
- 1. Meyer J., Geim A.K., Katsnelson M.I. et al. // Nature. 2007. V. 446. № 7131. P. 60.https://doi.org/10.1038/nature05545
- 2. Sofo J.O., Chaudhari A.S., Barber G.D. // Phys. Rev. B. 2007. V. 75. № 15. P. 153401. https://doi.org/10.1103/PhysRevB.75.153401
- 3. Zhong M., Xu D., Yu X et al. // Nano Energy. 2016. V. 28. P. 12. https://doi.org/10.1016/j.nanoen.2016.08.031
- 4. Peng B., Zhang H., Shao H. et al. // J. Mater. Chem. C. 2016. V. 4. P. 3592. https://doi.org/10.1039/C6TC00115G
- 5. Jiang J.W., Park H.S. // Nat. Commun. 2014. V. 5. P. 4727. https://doi.org/10.1038/ncomms5727
- 6. Tkachenko N.V., Steglenko D.V., Fedik N.S. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 19764. https://doi.org/10.1039/C9CP03786A
- 7. Zaitsev S.A., Steglenko D.V., Minyaev R.M. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 6. P. 780. https://doi.org/10.1134/S0036023619060172
- 8. Ghiasi R., Tale R., Daneshdoost V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 753. https://doi.org/10.1134/S003602362360003X
- 9. Sarvestani R.M.J., Ahmadi R., Yousefi M. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 761. https://doi.org/10.1134/S0036023623600107
- 10. Neumolotov N.K., Selivanov N.A., Bykov A.Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1583. https://doi.org/10.1134/S0036023622600861
- 11. Shmal’ko A.V., Sivaev I.B. // Russ. J. Inorg. Chem. 2019. V. 64. P. 1726. https://doi.org/10.1134/S0036023619140067
- 12. Sheng X-L., Yan Q-B., Ye F. et al. // Phys. Rev. Lett. 2011. V. 106. № 15. P. 155703. https://doi.org/10.1103/PhysRevLett.106.155703
- 13. Zhang J., Wang R., Zhu X. et al. // Nature Commun. 2017. V. 8. № 1. P. 683. https://doi.org/10.1038/s41467-017-00817-9
- 14. Getmanskii I.V., Koval V.V., Minyaev R.M. et al. // J. Phys. Chem. C. 2017. V. 121. № 40. P. 22187. https://doi.org/10.1021/acs.jpcc.7b07565
- 15. Getmanskii I.V., Minyaev R.M., Steglenko D.V. et al. // Angew. Chem. Int. Ed. 2017. V. 56. № 34. P. 10118. https://doi.org/10.1002/anie.201701225
- 16. Getmanskii I.V., Minyaev R.M., Koval V.V. // Mendeleev Commun. 2018. V. 28. № 2. P. 173. https://doi.org/10.1016/j.mencom.2018.03.021
- 17. Getmanskii I.V., Koval V.V., Boldyrev A.I. et al. // J. Comput. Chem. 2019. V. 40. № 20. P. 1861. https://doi.org/10.1002/jcc.25837
- 18. Steglenko D.V., Zaitsev S.A., Minyaev R.M. // Russ. J. Inorg. Chem. 2019. V. 64. № 8. P. 1031. https://doi.org/10.1134/S0036023619080163
- 19. Genady A.R. // Eur. J. Med. Chem. 2009. V. 44. P. 409. https://doi.org/10.1016/j.ejmech.2008.02.037
- 20. Sharapov V.M., Mirnov S.V., Grashin S.A. et al. // J. Nucl. Mater. 1995. V. 220. P. 730. https://doi.org/10.1016/0022-3115 (94)00575-3
- 21. Мещеряков А.И., Акулина Д.К., Батанов Г.М. и др. // Физика плазмы. 2005. Т. 31. С. 496.
- 22. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 16, Revision A.03. Gaussian Inc.: Wallingford CT, 2016.
- 23. Kresse G., Hafner J. // Phys. Rev. B. 1993. V. 47. № 1. P. 558. https://doi.org/10.1103/PhysRevB.47.558
- 24. Kresse G., Hafner J. // Phys. Rev. B. 1994. V. 49. № 20. P. 14251. https://doi.org/10.1103/PhysRevB.49.14251
- 25. Kresse G., Furthmuller J. // Comput. Mater. Sci. 1996. V. 6. № 1. P. 15. https://doi.org/10.1016/0927-0256 (96)00008-0
- 26. Kresse G., Furthmuller J. // Phys. Rev. B. 1996. V. 54. № 16. P. 11169. https://doi.org/10.1103/PhysRevB.54.11169
- 27. Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. № 3. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
- 28. Perdew J.P., Ruzsinszky A., Csonka G.I. // Phys. Rev. Lett. 2008. V. 100. № 13. P. 136406. https://doi.org/10.1103/PhysRevLett.100.136406
- 29. Blöchl P.E. // Phys. Rev. B: Condens. Matter Mater. Phys. 1994. V. 50. № 24. P. 17953. https://doi.org/10.1103/PhysRevB.50.17953
- 30. Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. № 3. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
- 31. Monkhorst H.J., Pack J.D. // Phys. Rev. B. 1976. V. 13. № 12. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
- 32. Togo A., Chaput L., Tadano T. et al. // Phys. Rev. B. 2015. V. 91. № 9. P. 094306. https://doi.org/10.1103/PhysRevB.91.094306
- 33. Togo A. // J. Phys. Soc. Jpn. 2023. V. 92. P. 012001. https://doi.org/10.7566/JPSJ.92.012001
- 34. Šimůnek A., Vackář J. // J. Phys. Rev. Lett. 2006. V. 96. P. 085501. https://doi.org/10.1103/PhysRevLett.96.085501
- 35. Liu Z.Y., Guo X., He J. et al. // Phys. Rev. Lett. 2007. V. 98. P. 109601. https://doi.org/10.1103/PhysRevLett.98.109601
- 36. Šimůnek A., Vackář J.A. // Phys. Rev. Lett. 2007. V. 98. P. 109602. https://doi.org/10.1103/PhysRevLett.98.109602
- 37. Šimůnek A., Vackář J. // Phys. Rev. B. 2007. V. 75. P. 172108. https://doi.org/10.1103/PhysRevB.75.172108
- 38. Li K.Y., Wang X.T., Zhang F.F. et al. // Phys. Rev. Lett. 2018. V. 100. P. 235504. https://doi.org/10.1103/PhysRevLett.100.235504
- 39. Li K.Y., Xue D.F. // Chin. Sci. Bull. 2009. V. 54. P. 131. https://doi.org/10.1007/s11434-008-0550-8
- 40. Chemcraft — graphical software for visualization of quantum chemistry computations. Version 1.8, build 654. https://www.chemcraftprog.com
- 41. Momma K., Izumi F. // J. Appl. Crystallogr. 2011. V. 44. P. 1272. https://doi.org/10.1107/S0021889811038970
- 42. McKee M.L. // J. Am. Chem. Soc. 1992. V. 114. № 3. P. 879. https://doi.org/10.1021/ja00029a012
- 43. Minyaev R.M., Minkin V.I., Gribanova T.N. et al. // Mendeleev Commun. 2001. V. 11. № 4. P. 132. https://doi.org/10.1070/MC2001v011n04ABEH001475
- 44. Mastryukov V.S., Dorofeeva O.V., Vilkov L.V. et al. // J. Chem. Soc. 1973. № 8. P. 276. https://doi.org/10.1039/C39730000276
- 45. Hill R. // Proc. Phys. Soc. 1952. V. 65. № 5. P. 349. https://doi.org/10.1088/0370-1298/65/5/307