RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Computer simulation of the properties and structure of crystalline 1,6-closo-carborane (С2B4)n

PII
10.31857/S0044457X24050133-1
DOI
10.31857/S0044457X24050133
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 5
Pages
751-756
Abstract
The structure and properties of a three-dimensional crystal consisting of 1,6-closo-carborane have been studied using quantum chemical methods with calculations in the approximation of functional density theory and the imposition of periodic boundary conditions. Calculations of the phonon energy spectrum and electronic band structure showed that the 3D crystal is structurally stable and belongs to an indirect gap semiconductor with a band gap of ~1.44 eV. The calculated parameters of mechanical properties showed that the hardness has the same values (21.8 GPa and 25.2 GPa) according to each method of theoretical evaluation of hardness, Young’s modulus is equal to 97.24 GPa and 242.90 GPa, respectively.
Keywords
карбораны фононный спектр электронная зонная структура полупроводники
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Meyer J., Geim A.K., Katsnelson M.I. et al. // Nature. 2007. V. 446. № 7131. P. 60.https://doi.org/10.1038/nature05545
  2. 2. Sofo J.O., Chaudhari A.S., Barber G.D. // Phys. Rev. B. 2007. V. 75. № 15. P. 153401. https://doi.org/10.1103/PhysRevB.75.153401
  3. 3. Zhong M., Xu D., Yu X et al. // Nano Energy. 2016. V. 28. P. 12. https://doi.org/10.1016/j.nanoen.2016.08.031
  4. 4. Peng B., Zhang H., Shao H. et al. // J. Mater. Chem. C. 2016. V. 4. P. 3592. https://doi.org/10.1039/C6TC00115G
  5. 5. Jiang J.W., Park H.S. // Nat. Commun. 2014. V. 5. P. 4727. https://doi.org/10.1038/ncomms5727
  6. 6. Tkachenko N.V., Steglenko D.V., Fedik N.S. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 19764. https://doi.org/10.1039/C9CP03786A
  7. 7. Zaitsev S.A., Steglenko D.V., Minyaev R.M. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 6. P. 780. https://doi.org/10.1134/S0036023619060172
  8. 8. Ghiasi R., Tale R., Daneshdoost V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 753. https://doi.org/10.1134/S003602362360003X
  9. 9. Sarvestani R.M.J., Ahmadi R., Yousefi M. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 761. https://doi.org/10.1134/S0036023623600107
  10. 10. Neumolotov N.K., Selivanov N.A., Bykov A.Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1583. https://doi.org/10.1134/S0036023622600861
  11. 11. Shmal’ko A.V., Sivaev I.B. // Russ. J. Inorg. Chem. 2019. V. 64. P. 1726. https://doi.org/10.1134/S0036023619140067
  12. 12. Sheng X-L., Yan Q-B., Ye F. et al. // Phys. Rev. Lett. 2011. V. 106. № 15. P. 155703. https://doi.org/10.1103/PhysRevLett.106.155703
  13. 13. Zhang J., Wang R., Zhu X. et al. // Nature Commun. 2017. V. 8. № 1. P. 683. https://doi.org/10.1038/s41467-017-00817-9
  14. 14. Getmanskii I.V., Koval V.V., Minyaev R.M. et al. // J. Phys. Chem. C. 2017. V. 121. № 40. P. 22187. https://doi.org/10.1021/acs.jpcc.7b07565
  15. 15. Getmanskii I.V., Minyaev R.M., Steglenko D.V. et al. // Angew. Chem. Int. Ed. 2017. V. 56. № 34. P. 10118. https://doi.org/10.1002/anie.201701225
  16. 16. Getmanskii I.V., Minyaev R.M., Koval V.V. // Mendeleev Commun. 2018. V. 28. № 2. P. 173. https://doi.org/10.1016/j.mencom.2018.03.021
  17. 17. Getmanskii I.V., Koval V.V., Boldyrev A.I. et al. // J. Comput. Chem. 2019. V. 40. № 20. P. 1861. https://doi.org/10.1002/jcc.25837
  18. 18. Steglenko D.V., Zaitsev S.A., Minyaev R.M. // Russ. J. Inorg. Chem. 2019. V. 64. № 8. P. 1031. https://doi.org/10.1134/S0036023619080163
  19. 19. Genady A.R. // Eur. J. Med. Chem. 2009. V. 44. P. 409. https://doi.org/10.1016/j.ejmech.2008.02.037
  20. 20. Sharapov V.M., Mirnov S.V., Grashin S.A. et al. // J. Nucl. Mater. 1995. V. 220. P. 730. https://doi.org/10.1016/0022-3115 (94)00575-3
  21. 21. Мещеряков А.И., Акулина Д.К., Батанов Г.М. и др. // Физика плазмы. 2005. Т. 31. С. 496.
  22. 22. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 16, Revision A.03. Gaussian Inc.: Wallingford CT, 2016.
  23. 23. Kresse G., Hafner J. // Phys. Rev. B. 1993. V. 47. № 1. P. 558. https://doi.org/10.1103/PhysRevB.47.558
  24. 24. Kresse G., Hafner J. // Phys. Rev. B. 1994. V. 49. № 20. P. 14251. https://doi.org/10.1103/PhysRevB.49.14251
  25. 25. Kresse G., Furthmuller J. // Comput. Mater. Sci. 1996. V. 6. № 1. P. 15. https://doi.org/10.1016/0927-0256 (96)00008-0
  26. 26. Kresse G., Furthmuller J. // Phys. Rev. B. 1996. V. 54. № 16. P. 11169. https://doi.org/10.1103/PhysRevB.54.11169
  27. 27. Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. № 3. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
  28. 28. Perdew J.P., Ruzsinszky A., Csonka G.I. // Phys. Rev. Lett. 2008. V. 100. № 13. P. 136406. https://doi.org/10.1103/PhysRevLett.100.136406
  29. 29. Blöchl P.E. // Phys. Rev. B: Condens. Matter Mater. Phys. 1994. V. 50. № 24. P. 17953. https://doi.org/10.1103/PhysRevB.50.17953
  30. 30. Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. № 3. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
  31. 31. Monkhorst H.J., Pack J.D. // Phys. Rev. B. 1976. V. 13. № 12. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
  32. 32. Togo A., Chaput L., Tadano T. et al. // Phys. Rev. B. 2015. V. 91. № 9. P. 094306. https://doi.org/10.1103/PhysRevB.91.094306
  33. 33. Togo A. // J. Phys. Soc. Jpn. 2023. V. 92. P. 012001. https://doi.org/10.7566/JPSJ.92.012001
  34. 34. Šimůnek A., Vackář J. // J. Phys. Rev. Lett. 2006. V. 96. P. 085501. https://doi.org/10.1103/PhysRevLett.96.085501
  35. 35. Liu Z.Y., Guo X., He J. et al. // Phys. Rev. Lett. 2007. V. 98. P. 109601. https://doi.org/10.1103/PhysRevLett.98.109601
  36. 36. Šimůnek A., Vackář J.A. // Phys. Rev. Lett. 2007. V. 98. P. 109602. https://doi.org/10.1103/PhysRevLett.98.109602
  37. 37. Šimůnek A., Vackář J. // Phys. Rev. B. 2007. V. 75. P. 172108. https://doi.org/10.1103/PhysRevB.75.172108
  38. 38. Li K.Y., Wang X.T., Zhang F.F. et al. // Phys. Rev. Lett. 2018. V. 100. P. 235504. https://doi.org/10.1103/PhysRevLett.100.235504
  39. 39. Li K.Y., Xue D.F. // Chin. Sci. Bull. 2009. V. 54. P. 131. https://doi.org/10.1007/s11434-008-0550-8
  40. 40. Chemcraft — graphical software for visualization of quantum chemistry computations. Version 1.8, build 654. https://www.chemcraftprog.com
  41. 41. Momma K., Izumi F. // J. Appl. Crystallogr. 2011. V. 44. P. 1272. https://doi.org/10.1107/S0021889811038970
  42. 42. McKee M.L. // J. Am. Chem. Soc. 1992. V. 114. № 3. P. 879. https://doi.org/10.1021/ja00029a012
  43. 43. Minyaev R.M., Minkin V.I., Gribanova T.N. et al. // Mendeleev Commun. 2001. V. 11. № 4. P. 132. https://doi.org/10.1070/MC2001v011n04ABEH001475
  44. 44. Mastryukov V.S., Dorofeeva O.V., Vilkov L.V. et al. // J. Chem. Soc. 1973. № 8. P. 276. https://doi.org/10.1039/C39730000276
  45. 45. Hill R. // Proc. Phys. Soc. 1952. V. 65. № 5. P. 349. https://doi.org/10.1088/0370-1298/65/5/307
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library