ОХНМЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Термическая стабильность нанокристаллического сульфида цинка ZnS

Код статьи
10.31857/S0044457X22601936-1
DOI
10.31857/S0044457X22601936
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 68 / Номер выпуска 4
Страницы
444-451
Аннотация
Нанокристаллические порошки сульфида цинка (ZnS) синтезированы химическим осаждением из водных растворов нитрата цинка и сульфида натрия в присутствии цитрата натрия или Трилона Б. Изменение концентрации реагентов в реакционных смесях позволило получить нанопорошки ZnS со средним размером частиц от 2 до 9 нм. Показано, что отжиг нанопорошков ZnS на воздухе при температуре от 280 до 530°C приводит к окислению кубического сульфида цинка до гексагонального оксида цинка. Установлено, что окисление наиболее мелких нанопорошков сульфида цинка с размером частиц 2 нм начинается при 280–330°C, а наиболее крупного нанопорошка с размером частиц 9 нм – при температуре 530°C. Выявлено, что размер частиц наиболее крупного синтезированного порошка ZnS при повышении температуры до 530°C увеличивается всего лишь с 9 до 12 нм, тогда как размер частиц наиболее мелких нанопорошков при таком же повышении температуры растет с 2 до 9 нм.
Ключевые слова
химическое осаждение стабильность фазового состава и размера оксид цинка
Дата публикации
17.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
15

Библиография

  1. 1. Kaur N., Kaur S., Singh J. et al. // J. Bioelectron. Nanotechnol. 2016. V. 1. № 1. P. 5. https://doi.org/10.13188/2475-224X.1000006
  2. 2. Cardona M., Harbeke G. // Phys. Rev. 1965. V. 137. № 5A. P. A1467. https://doi.org/10.1103/PhysReV.137.A1467
  3. 3. Sadovnikov S.I., Rempel A.A., Gusev A.I. // Russ. Chem. Rev. 2018. V. 87. № 4. P. 303. https://doi.org/10.1070/RCR4803
  4. 4. Fang X., Zhai T., Gautam U.K. et al. // Prog. Mater. Sci. 2011. V. 56. № 2. P. 175. https://doi.org/10.1016/j.pmatsci.2010.10.001
  5. 5. Wang X., Huang H., Liang B. et al. // Crit. Rev. Solid State Mater. Sci. 2013. V. 38. № 1. P. 57. https://doi.org/10.1080/10408436.2012.736887
  6. 6. Kryshtab T., Khomchenko V.S., Andraca-Adame J.A. et al. // J. Lumin. 2009. V. 129. № 12. P. 1677. https://doi.org/j.jlumin.2009.04.069
  7. 7. Ma X., Song J., Yu Z. // Thin Solid Films. 2011. V. 519. № 15. P. 5043. https://doi.org/10.1016/j.tsf.2011.01.125
  8. 8. Ummartyotin S., Infahsaeng Y. // Renewable Sustainable Energy Rev. 2016. V. 55. P. 17. https://doi.org/10.1016/j.rser.2015.10.120
  9. 9. Koroleva M.Yu., Gulyaeva E.V., Yurtov E.V. // Russ. J. Inorg. Chem. 2012. V. 57. № 3. P. 320. https://doi.org/10.1134/S0036023612030151
  10. 10. Kuznetsova Yu.V., Popov I.D., Rempel A.A. // AIP Conf. Proc. 2020. V. 2313. P. 030021. https://doi.org/10.1063/5.0032224
  11. 11. Sadovnikov S.I., Ishchenko A.V., Weinstein I.A. // J. Alloys Compd. 2020. V. 851. P. 154846. https://doi.org/10.1016/j.jallcom.2020.154846
  12. 12. Shanmugam N., Shanmugam C., Kannadasan N. et al. // J. Nanomater. 2013. P. 351798. https://doi.org/10.1155/2013/351798
  13. 13. Mohamed M.B., Abdel-Kader M.H. // Mater. Chem. Phys. 2020. V. 241. P. 122285. https://doi.org/10.1016/j.matchemphys.2019.122285
  14. 14. Queiroz C.A.R., Carvalho R.J., Moura F.J. // Brazil. J. Chem. Eng. 2005. V. 22. № 1. P. 127. https://doi.org/10.1590/S0104-66322005000100012
  15. 15. Osuntokun J., Ajibade P.A. // J. Nanomater. 2016. V. 2016. P. 3296071. https://doi.org/10.1155/2016/3296071
  16. 16. Osuntokun J., Ajibade P.A. // Physica B: Cond. Matter. 2016. V. 496. P. 106. https://doi.org/10.1016/j.physb.2016.05.024
  17. 17. Sadovnikov S.I., Gerasimov E.Yu. // Nanoscale Advances. 2019. V. 1. № 4. P. 1581. https://doi.org/10.1039/c8na00347e
  18. 18. Sadovnikov S.I. // Russ. J. Inorg. Chem. 2019. V. 64. № 10. P. 1309. https://doi.org/10.1134/S0036023619100115
  19. 19. X’Pert HighScore Plus. Version 2.2e (2.2.5). © 2009 PANalytical B. V. Almedo, the Netherlands.
  20. 20. Match! Version 1.10b. Phase Identification from Powder Diffraction © 2003-2010 Crystal Impact.
  21. 21. Van Aswegen J.T.S., Verleger H. // Die Naturwissenschafien. 1960. V. 47. № 6. P. 131. https://doi.org/10.1007/BF00628510
  22. 22. JCPDS card № 005-0566.
  23. 23. Xu Y.N., Ching W.Y. // Phys. Rev. B. 1993. V. 48. № 7. P. 4335. https://doi.org/10.1103/PhysRevB.48.4335
  24. 24. Ballentyne D.W.G., Roy B. // Physica. 1961. V. 27. № 3. P. 337. https://doi.org/10.1016/0031-8914 (61)90106-9
  25. 25. Sadovnikov S.I., Kozhevnikova N.S., Rempel A.A. // Inorg. Mater. 2011. V. 47. № 8. P. 837. https://doi.org/10.1134/S0020168511080176
  26. 26. Sadovnikov S.I., Kozhevnikova N.S., Rempel A.A. // Russ. J. Inorg. Chem. 2011. V. 56. № 12. P. 1864. https://doi.org/10.1134/S0036023611120448
  27. 27. Kim S., Merkle R., Maier J. // Solid State Ionics. 2003. V. 161. № 1-2. P. 113. https://doi.org/10.1016/S0167-2738 (03)00262-5
  28. 28. Szałaj U., Świderska Ś.A., Chodara A. et al. // Nanomaterials. 2019. V. 9. № 7. P. 1005.
  29. 29. Drygas M., Janik J.F., Czepirski L. // Curr. Nanosci. 2013. V. 9. № 3. P. 318. https://doi.org/10.2174/1573413711309030004
  30. 30. Sadovnikov S.I., Gusev A.I. // J. Alloys Compd. 2014. V. 586. P. 105. https://doi.org/10.1016/j.jallcom.2013.10.008
  31. 31. Bhattacharjee M., Bandyopadhyay D. // Sens. Actuators, A.: Phys. 2019. V. 285. P. 241. https://doi.org/10.1016/j.sna.2018.11.034
  32. 32. Sadovnikov S.I., Gusev A.I. // J. Therm. Anal. Calorim. 2018. V. 131. № 2. P. 1155. https://doi.org/10.1007/s10973-017-6691-8
  33. 33. Орлов А.К. // Записки Горного института. 2006. Т. 169. С. 163.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека