RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Thermal Stability of Nanocrystalline Zinc Sulfide ZnS

PII
10.31857/S0044457X22601936-1
DOI
10.31857/S0044457X22601936
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 4
Pages
444-451
Abstract
Nanocrystalline zinc sulfide (ZnS) powders are prepared via hydrothermal deposition from aqueous solutions of zinc nitrate and sodium sulfide in the presence of sodium citrate or Trilon B. The average particle sizes of the product ZnS nanopowders ranging from 2 to 9 nm are tuned via varying the batch concentrations of the reagents. Air-annealing of as-prepared ZnS nanopowders at temperatures of 280 to 530°C oxidizes cubic zinc sulfide to hexagonal zinc oxide. The oxidation of the finest-grained zinc sulfide nanopowders having a particle size of 2 nm starts at 280–330°C, while the coarsest-grained nanopowder having a particle size of 9 nm starts to oxidize at 530°C. In the coarsest-grained ZnS powder, the particle size increases as little as from 9 to 12 nm when temperature rises to 530°C, while the finest-grained nanopowders have their particle sizes increase from 2 to 9 nm in response to the same rise in temperature.
Keywords
химическое осаждение стабильность фазового состава и размера оксид цинка
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Kaur N., Kaur S., Singh J. et al. // J. Bioelectron. Nanotechnol. 2016. V. 1. № 1. P. 5. https://doi.org/10.13188/2475-224X.1000006
  2. 2. Cardona M., Harbeke G. // Phys. Rev. 1965. V. 137. № 5A. P. A1467. https://doi.org/10.1103/PhysReV.137.A1467
  3. 3. Sadovnikov S.I., Rempel A.A., Gusev A.I. // Russ. Chem. Rev. 2018. V. 87. № 4. P. 303. https://doi.org/10.1070/RCR4803
  4. 4. Fang X., Zhai T., Gautam U.K. et al. // Prog. Mater. Sci. 2011. V. 56. № 2. P. 175. https://doi.org/10.1016/j.pmatsci.2010.10.001
  5. 5. Wang X., Huang H., Liang B. et al. // Crit. Rev. Solid State Mater. Sci. 2013. V. 38. № 1. P. 57. https://doi.org/10.1080/10408436.2012.736887
  6. 6. Kryshtab T., Khomchenko V.S., Andraca-Adame J.A. et al. // J. Lumin. 2009. V. 129. № 12. P. 1677. https://doi.org/j.jlumin.2009.04.069
  7. 7. Ma X., Song J., Yu Z. // Thin Solid Films. 2011. V. 519. № 15. P. 5043. https://doi.org/10.1016/j.tsf.2011.01.125
  8. 8. Ummartyotin S., Infahsaeng Y. // Renewable Sustainable Energy Rev. 2016. V. 55. P. 17. https://doi.org/10.1016/j.rser.2015.10.120
  9. 9. Koroleva M.Yu., Gulyaeva E.V., Yurtov E.V. // Russ. J. Inorg. Chem. 2012. V. 57. № 3. P. 320. https://doi.org/10.1134/S0036023612030151
  10. 10. Kuznetsova Yu.V., Popov I.D., Rempel A.A. // AIP Conf. Proc. 2020. V. 2313. P. 030021. https://doi.org/10.1063/5.0032224
  11. 11. Sadovnikov S.I., Ishchenko A.V., Weinstein I.A. // J. Alloys Compd. 2020. V. 851. P. 154846. https://doi.org/10.1016/j.jallcom.2020.154846
  12. 12. Shanmugam N., Shanmugam C., Kannadasan N. et al. // J. Nanomater. 2013. P. 351798. https://doi.org/10.1155/2013/351798
  13. 13. Mohamed M.B., Abdel-Kader M.H. // Mater. Chem. Phys. 2020. V. 241. P. 122285. https://doi.org/10.1016/j.matchemphys.2019.122285
  14. 14. Queiroz C.A.R., Carvalho R.J., Moura F.J. // Brazil. J. Chem. Eng. 2005. V. 22. № 1. P. 127. https://doi.org/10.1590/S0104-66322005000100012
  15. 15. Osuntokun J., Ajibade P.A. // J. Nanomater. 2016. V. 2016. P. 3296071. https://doi.org/10.1155/2016/3296071
  16. 16. Osuntokun J., Ajibade P.A. // Physica B: Cond. Matter. 2016. V. 496. P. 106. https://doi.org/10.1016/j.physb.2016.05.024
  17. 17. Sadovnikov S.I., Gerasimov E.Yu. // Nanoscale Advances. 2019. V. 1. № 4. P. 1581. https://doi.org/10.1039/c8na00347e
  18. 18. Sadovnikov S.I. // Russ. J. Inorg. Chem. 2019. V. 64. № 10. P. 1309. https://doi.org/10.1134/S0036023619100115
  19. 19. X’Pert HighScore Plus. Version 2.2e (2.2.5). © 2009 PANalytical B. V. Almedo, the Netherlands.
  20. 20. Match! Version 1.10b. Phase Identification from Powder Diffraction © 2003-2010 Crystal Impact.
  21. 21. Van Aswegen J.T.S., Verleger H. // Die Naturwissenschafien. 1960. V. 47. № 6. P. 131. https://doi.org/10.1007/BF00628510
  22. 22. JCPDS card № 005-0566.
  23. 23. Xu Y.N., Ching W.Y. // Phys. Rev. B. 1993. V. 48. № 7. P. 4335. https://doi.org/10.1103/PhysRevB.48.4335
  24. 24. Ballentyne D.W.G., Roy B. // Physica. 1961. V. 27. № 3. P. 337. https://doi.org/10.1016/0031-8914 (61)90106-9
  25. 25. Sadovnikov S.I., Kozhevnikova N.S., Rempel A.A. // Inorg. Mater. 2011. V. 47. № 8. P. 837. https://doi.org/10.1134/S0020168511080176
  26. 26. Sadovnikov S.I., Kozhevnikova N.S., Rempel A.A. // Russ. J. Inorg. Chem. 2011. V. 56. № 12. P. 1864. https://doi.org/10.1134/S0036023611120448
  27. 27. Kim S., Merkle R., Maier J. // Solid State Ionics. 2003. V. 161. № 1-2. P. 113. https://doi.org/10.1016/S0167-2738 (03)00262-5
  28. 28. Szałaj U., Świderska Ś.A., Chodara A. et al. // Nanomaterials. 2019. V. 9. № 7. P. 1005.
  29. 29. Drygas M., Janik J.F., Czepirski L. // Curr. Nanosci. 2013. V. 9. № 3. P. 318. https://doi.org/10.2174/1573413711309030004
  30. 30. Sadovnikov S.I., Gusev A.I. // J. Alloys Compd. 2014. V. 586. P. 105. https://doi.org/10.1016/j.jallcom.2013.10.008
  31. 31. Bhattacharjee M., Bandyopadhyay D. // Sens. Actuators, A.: Phys. 2019. V. 285. P. 241. https://doi.org/10.1016/j.sna.2018.11.034
  32. 32. Sadovnikov S.I., Gusev A.I. // J. Therm. Anal. Calorim. 2018. V. 131. № 2. P. 1155. https://doi.org/10.1007/s10973-017-6691-8
  33. 33. Орлов А.К. // Записки Горного института. 2006. Т. 169. С. 163.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library