RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

PREPARATION AND INVESTIGATION OF COMPOSITE BASED ON REDUCED GRAPHENE OXIDE AND Fe₃O₄ NANOPARTICLES

PII
S3034560XS0044457X25080138-1
DOI
10.7868/S3034560X25080138
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 8
Pages
1089-1096
Abstract
Graphene oxide (GO) and composites based on it are often used to produce graphene-like materials by thermal or chemical reduction, and the reduction method strongly affects the properties of the materials. In this study, a new method was proposed to prepare a conductive composite based on reduced graphene oxide (RGO) with magnetite nanoparticles (NPs) with an average diameter of 18 nm dispersed on its surface. The method consisted of treating a GO-based composite with Fe₃O₄ on the its surface in supercritical isopropanol. The composites based on GO and RGO and magnetite NPs were investigated by FTIR spectroscopy, X-ray diffractive analysis and scanning electron microscopy. It is shown that the sample compact film of the RGO-based composite has specific surface resistivity is 22 Ohm/cm² and saturation magnetisation is 32.3 emu/g.
Keywords
углеродные наноматериалы восстановленный оксид графена магнетит композитный материал проводимость
Date of publication
08.12.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Chang H. // MRS Bulletin. 2015. V. 40. № 5. P. 445. https://doi.org/10.1557/mrs.2015.93
  2. 2. 2. Wang P., Hu M., Wang H. et al. // Adv. Sci. 2020. V. 7. № 20. P. 2001116. https://doi.org/10.1002/advs.202001116
  3. 3. 3. Corzo D., Tostado-Blázquez G., Baran D. // Front. Electron. 2020. V. 1. https://doi.org/10.3389/felec.2020.594003
  4. 4. 4. Han T.H., Kim H., Kwon S.J. et al. // Mater. Sci. Eng. R.: Rep. 2017. V. 118. P. 1. https://doi.org/10.1016/j.mser.2017.05.001
  5. 5. 5. Feng H., Fang X., Liu X. et al. // Compos. -A: Appl. Sci. Manuf. 2018. V. 109. P. 578. https://doi.org/10.1016/j.compositesa.2018.03.035
  6. 6. 6. Mitin D.M., Pavlov A., Fedorov F.S. et al. // Sens. Actuators, B: Chem. 2024. V. 417. P. 136095. https://doi.org/10.1016/j.snb.2024.136095
  7. 7. 7. Mehmood T., Alotaibi B.M., Alrowaily A.W. et al. // Diam. Relat. Mater. 2025. V. 152. P. 11943. https://doi.org/10.1016/j.diamond.2024.111943
  8. 8. 8. Qi S., Zhang C., Sun M. et al. // Diam. Relat. Mater. 2025. V. 154. P. 112258. https://doi.org/10.1016/j.diamond.2025.112258
  9. 9. 9. Stefan-Henningsen E., Roberts N., Kiani A. // Results Eng. 2025. V. 25. P. 104551. https://doi.org/10.1016/j.rineng.2025.104551
  10. 10. 10. Kang D., Lee M., Lee S.J. et al. // Appl. Surf. Sci. 2023. V. 624. P. 157121. https://doi.org/10.1016/j.apsusc.2023.157121
  11. 11. 11. Mohamed Z., Al-Asbahi B.A., Al-Hada N.M. et al. // Surf. Interfaces. 2025. V. 57. P. 105761. https://doi.org/10.1016/j.surfin.2025.105761
  12. 12. 12. Ivannikova A.S., Ioni Y.V., Sapkov I.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 787. https://doi.org/10.1134/S0036023623600703
  13. 13. 13. Ioni Y.V., Voronov V.V., Naumkin A.V. et al. // Russ. J. Inorg. Chem. 2015. V. 60. P. 709. https://doi.org/10.1134/S0036023615060066
  14. 14. 14. Bao Z.L., Guo N., Feng J.Y. et al. // Surf. Interfaces. 2025. V. 62. P. 106258. https://doi.org/10.1016/j.surfin.2025.106258
  15. 15. 5. Hilmi D., Zaim S., Mortadi A. et al. // Results Eng. 2024. V. 23. P. 102673. https://doi.org/10.1016/j.rineng.2024.102673
  16. 16. 16. Ioni Y.V., Groshkova Y.A., Buslaeva E.Y. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 950. https://doi.org/10.1134/S0036023621060115
  17. 17. 17. Bhaskaram D.S., Biswal S., Govindaraj G. et al. // J. Alloys Compd. 2025. V. 1010. P. 178129. https://doi.org/10.1016/j.jallcom.2024.178129
  18. 18. 18. Apsey H., Hill D., McCoy T.M. et al. // J. Colloid Interface Sci. 2025. V. 687. P. 189. https://doi.org/10.1016/j.jcis.2025.02.055
  19. 19. 19. Yao F., Li W., SKS S.K. et al. // Chem. Eng. J. 2024. V. 488. P. 150828. https://doi.org/10.1016/j.cej.2024.150828
  20. 20. 20. Liang T., Hou W., Ji J. et al. // Sens. Actuators, А: Phys. 2023. V. 350. P. 144104. https://doi.org/10.1016/j.sna.2022.114104
  21. 21. 21. Ioni Y., Khamidullin T., Sapkov I. et al. // Carbon Lett. 2024. V. 34. № 4. P.1219. https://doi.org/10.1007/s42823-023-00680-3
  22. 22. 22. Massart R. // IEEE Trans. Magn. 1981. V. 17. № 2. https://doi:10.1109/tmag.1981.1061188
  23. 23. 3. Galstenkova M.R., Mukhortova Y.R., Pryadko A.S. et al. // Nano-Struct. Nano-Objects. 2025. V. 41. P. 101431. https://doi.org/10.1016/j.nanoso.2025.101431
  24. 24. 24. Sarmasti K., Golchin A., Bostani A. et al. // Chemosphere. 2025. V. 378. P. 144424. https://doi.org/10.1016/j.chemosphere.2025.144424
  25. 25. 25. Basit A., Yaqoob Z., Zahid A. et al. // Heliyon. 2025. V. 11. № 2. P. e41063. https://doi.org/10.1016/j.heliyon.2024.e41063
  26. 26. 26. Brusko V., Khannanov A., Rakhmatullin A. et al. // Carbon. 2024. V. 229. 119507. https://doi.org/10.1016/j.carbon.2024.119507
  27. 27. 27. Tayyebi A., Outokesh M. // RSC Advances. 2016. V. 6. № 17. P. 13898. https://doi.org/10.1039/C5RA19057F
  28. 28. 28. Mondal A., Kundu A.K., Biswas H.S. et al. // Inorg. Chem. Commun. 2024. V. 170. P. 113016. https://doi.org/10.1016/j.inoche.2024.113016
  29. 29. 29. Rehman T. ur, Shah L.A., Khan M. // Mater. Adv. 2024. V. 5. № 2. P. 806. https://doi.org/10.1039/D3MA00803G
  30. 30. 30. Ribeiro V.G.P., Barreto A.C.H., Denardin J.C. et al. // J. Mater. Adv. 2013. V. 48. P. 7875. https://doi.org/10.1007/s10853-013-7477-4
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library