- PII
- S3034560XS0044457X25080123-1
- DOI
- 10.7868/S3034560X25080123
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 8
- Pages
- 1081-1088
- Abstract
- Vanadium(V) oxide films doped with 10 mol.% NiO and 10 mol.% WO₃ were obtained by aerosol printing. In the first case, the film crystallizes in tetragonal β-V₂O₅ modification with high texturing along the {200} crystallographic plane, while the material is X-ray amorphous when doped with tungsten. The values of electron yield work from the surface of the materials indicate high defectivity of the film containing WO₃. Both samples exhibit anodic electrochromism, however, V₂O₅–10 mol.% NiO shows higher values of optical contrast and coloration efficiency. The results of the study clearly reflect the influence of the nature of the considered dopants on the functional properties of the obtained materials and demonstrate the promising potential of the aerosol printing method for the formation of electrochromic films.
- Keywords
- оксид ванадия оксид вольфрама тонкие пленки аэрозольная печать электрохромизм печатные технологии электрохромные материалы
- Date of publication
- 08.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 17
References
- 1. 1. Mortimer R.J., Dyer A.L., Reynolds J.R. // Displays. 2006. V. 27. № 1. P. 2. https://doi.org/10.1016/j.displa.2005.03.003
- 2. 2. Mortimer R.J. // Annu. Rev. Mater. Res. 2011. V. 41. № 1. P. 241. https://doi.org/10.1146/annurev-matsci-062910-100344
- 3. 3. Granqvist C.G., Arvizu M.A., Qu H.Y. et al. // Surf. Coat. Technol. 2019. V. 357. № January 2019. P. 619. https://doi.org/10.1016/j.surfcoat.2018.10.048
- 4. 4. Granqvist C.G., Arvizu M.A., Bayrak Pehlivan et al. // Electrochim. Acta. 2018. V. 259. № January 2018. P. 1170. https://doi.org/10.1016/j.electacta.2017.11.169
- 5. 5. Granqvist C.G. // Thin Solid Films. 2014. V. 564. № August 2014. P. 1. https://doi.org/10.1016/j.tsf.2014.02.002
- 6. 6. Yang G., Zhang Y.M., Cai Y. et al. // Chem. Soc. Rev. 2020. V. 49. № 23. P. 8687. https://doi.org/10.1039/d0cs00317d
- 7. 7. Gu C., Jia A.B., Zhang Y.M. et al. // Chem. Rev. 2022. V. 122. № 18. P. 14679. https://doi.org/10.1021/acs.chemrev.1c01055
- 8. 8. Vlachopoulos N., Nissfolk J., Möller M. et al. // Electrochim. Acta. 2008. V. 53. № 11. P. 4065. https://doi.org/10.1016/j.electacta.2007.10.011
- 9. 9. Cheng K.C., Chen F.R., Kai J.J. // Solar Energy Materials and Solar Cells. 2006. V. 90. № 7–8. P. 1156. https://doi.org/10.1016/j.solmat.2005.07.006
- 10. 10. Scherer M.R.J., Li L., Cunha P.M.S. et al. // Advanced Materials. 2012. V. 24. № 9. P. 1217. https://doi.org/10.1002/adma.201104272
- 11. 11. Jin A., Chen W., Zhu Q. et al. // Electrochim. Acta. 2010. V. 55. № 22. P. 6408. https://doi.org/10.1016/j.electacta.2010.06.047
- 12. 12. Kim S., Taya M., Xu C. // J. Electrochem. Soc. 2009. V. 156. № 2. P. E40. https://doi.org/10.1149/1.3031978
- 13. 13. Vernardou D. // Coatings. 2017. V. 7. № 2. P. 24. https://doi.org/10.3390/coatings7020024
- 14. 14. Panagopoulou M., Vernardou D., Koudoumas E. et al. // Electrochim. Acta. 2019. V. 321. P. 134743. https://doi.org/10.1016/j.electacta.2019.134743
- 15. 15. Panagopoulou M., Vernardou D., Koudoumas E. et al. // Electrochim. Acta. 2017. V. 232. P. 54. https://doi.org/10.1016/j.electacta.2017.02.128
- 16. 16. Yao J., Li Y., Massé R.C. et al. // Energy Storage Mater. 2018. V. 11. P. 205. https://doi.org/10.1016/j.ensm.2017.10.014
- 17. 17. Yue Y., Liang H. // Adv. Energy Mater. 2017. V. 7. № 17. P. 1. https://doi.org/10.1002/aenm.201602545
- 18. 18. Liu M., Su B., Tang Y. et al. // Adv. Energy Mater. 2017. V. 7. № 23. P. 1700885. https://doi.org/10.1002/aenm.201700885
- 19. 19. Zanarini S., Di Lupo F., Bedini A. et al. // J. Mater. Chem. C. 2014. V. 2. № 42. P. 8854. https://doi.org/10.1039/c4tc01123f
- 20. 20. Panagopoulou M., Vernardou D., Koudoumas E. et al. // J. Phys. Chem. C. 2017. V. 121. № 1. P. 70. https://doi.org/10.1021/acs.jpcc.6b09018
- 21. 21. Lin T.C., Jheng B.J., Huang W.C. // Energies (Basel). 2021. V. 14. № 8. P. 1. https://doi.org/10.3390/en14082065
- 22. 22. Sonavane A.C., Inamdar A.I., Shinde P.S. et al. // J. Alloys Compd. 2010. V. 489. № 2. P. 667. https://doi.org/10.1016/j.jallcom.2009.09.146
- 23. 23. Yoshino T., Kobayashi K., Araki S. et al. // Solar Energy Materials and Solar Cells. 2012. V. 99. P. 43. https://doi.org/10.1016/j.solmat.2011.08.024
- 24. 24. Liu Q., Chen Q., Zhang Q. et al. // J. Mater. Chem. C. 2018. V. 6. № 3. P. 646. https://doi.org/10.1039/c7tc04696k
- 25. 25. Avendaño E., Berggren L., Niklasson G.A. et al. // Thin Solid Films. 2006. V. 496. № 1. P. 30. https://doi.org/10.1016/j.tsf.2005.08.183
- 26. 26. Niklasson G.A., Berggren L., Larsson A.L. // Solar Energy Materials and Solar Cells. 2004. V. 84. № 1–4. P. 315. https://doi.org/10.1016/j.solmat.2004.01.045
- 27. 27. Ataalla M., Afify A.S., Hassan M. et al. // J. Non. Cryst. Solids. 2018. V. 491. № March. P. 43. https://doi.org/10.1016/j.jnoncrysol.2018.03.050
- 28. 28. Chithambararaj A., Nandigana P., Kaleesh Kumar M. et al. // Appl. Surf. Sci. 2022. V. 582. № January. P. 152424. https://doi.org/10.1016/j.apsusc.2022.152424
- 29. 29. Wang W.Q., Yao Z.J., Wang X.L. et al. // J. Colloid Interface Sci. 2019. V. 535. P. 300. https://doi.org/10.1016/j.jcis.2018.10.006
- 30. 30. Wen R.T., Niklasson G.A., Granqvist C.G. // Solar Energy Materials and Solar Cells. 2014. V. 120. № January 2014. P. 151. https://doi.org/10.1016/j.solmat.2013.08.035
- 31. 31. Ćatić N., Wells L., Al Nahas K. et al. // Appl. Mater. Today. 2020. V. 19. № June 2020. P. 100618. https://doi.org/10.1016/j.apmt.2020.100618
- 32. 32. Serpelloni M., Cantù E., Borghetti M. et al. // Sensors (Switzerland). 2020. V. 20. № 3. P. 841. https://doi.org/10.3390/s20030841
- 33. 33. Wilkinson N.J., Smith M.A.A., Kay R.W. et al. // International Journal of Advanced Manufacturing Technology. 2019. V. 105. № 11. P. 4599. https://doi.org/10.1007/s00170-019-03438-2
- 34. 34. Agarwala S., Goh G.L., Yeong W.Y. // IOP Conf. Ser. Mater. Sci. Eng. 2017. V. 191. № 1. P. 012027. https://doi.org/10.1088/1757-899X/191/1/012027
- 35. 35. Cooper C., Hughes B. // 2020 Pan Pacific Microelectronics Symposium, Pan Pacific 2020. 2020. P. 170. https://doi.org/10.23919/PanPacific48324.2020.9059444
- 36. 36. Talledo A., Valdivia H., Benndorf C. // Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 2003. V. 21. № 4. P. 1494. https://doi.org/10.1116/1.1586282
- 37. 37. Zou C., Fan L., Chen R. et al. // CrystEngComm. 2012. V. 14. № 2. P. 626. https://doi.org/10.1039/c1ce06170d
- 38. 38. Khlayboonme S.T. // Results Phys. 2022. V. 42. № November 2022. P. 106000. https://doi.org/10.1016/j.rinp.2022.106000
- 39. 39. Khlayboonme S.T., Thedsakhulwong A. // Mater. Res. Express. 2022. V. 9. № 7. P. 076401. https://doi.org/10.1088/2053-1591/ac827a
- 40. 40. Asadov A., Mukhtar S., Gao W. // Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 2015. V. 33. № 4. P. 041802. https://doi.org/10.1116/1.4922628
- 41. 41. Gorobtsov P.Yu., Simonenko T.L., Simonenko N.P. et al. // Colloids and Interfaces. 2023. V. 7. № 1. P. 20. https://doi.org/10.3390/colloids7010020
- 42. 42. Costa C., Pinheiro C., Henriques I. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 10. P. 5266. https://doi.org/10.1021/am301213b
- 43. 43. Meyer J., Zilberberg K., Riedl T. et al. // J. Appl. Phys. 2011. V. 110. № 3. P. 033710. https://doi.org/10.1063/1.3611392
- 44. 44. Zhang H., Wang S., Sun X. et al. // J. Mater. Chem. C. 2017. V. 5. № 4. P. 817. https://doi.org/10.1039/c6tc04050k
- 45. 45. Choi S.G., Seok H.J., Rhee S. et al. // J. Alloys. Compd. 2021. V. 878. № October 2021. P. 160303. https://doi.org/10.1016/j.jallcom.2021.160303
- 46. 46. Peng H., Sun W., Li Y. et al. // Nano Res. 2016. V. 9. № 10. P. 2960. https://doi.org/10.1007/s12274-016-1181-z
- 47. 47. Gorobtsov P.Yu., Mokrushin A.S., Simonenko T.L. et al. // Materials. 2022. V. 15. № 21. P. 7837. https://doi.org/10.3390/ma15217837