RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Thermophysical properties of ceramics produced from nanocrystalline InFeZnO powder

PII
S3034560XS0044457X25080051-1
DOI
10.7868/S3034560X25080051
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 8
Pages
1021-1030
Abstract
The paper discusses the results of a study of the structural and thermophysical characteristics of polycrystalline ceramics produced from the InFeZnO nanoparticles. It was found that the bulk density of the resulting material is ~86% of the theoretical one. Scanning electron microscopy has shown that it has a dense microcrystalline structure consisting of randomly oriented grains with dimensions of 5–20 µm. The thermal diffusivity of In-FeZnO ceramics was studied using the laser flash method. It was found that as the temperature increases from 299 to 1273 K, it decreases from 1.29 to 0.44 mm/s. Using adiabatic and differential scanning calorimetry, the temperature dependence of the heat capacity of InFeZnO was studied for the first time. It was established that the measured curve has no signs of the existence of phase transitions in the range from 83 to 923 K. Using experimental data on thermal diffusivity, heat capacity, and density, an equation for the dependence describing the change in thermal conductivity of the material under study in the range from 299 to 1273 K was obtained. It was revealed that ceramics produced from InFeZnO nanoparticles obtained by the polymer-salt method have a higher thermal conductivity compared to those synthesized by standard ceramic technology from a mixture of InO, FeO and ZnO oxides. The results obtained allow us to recommend InFeZnO as a basis for the creation of thermally stable functional materials with low thermal conductivity at high temperatures.
Keywords
оксид индия-железа-цинка тригональная сингония наночастицы микрокристаллическая керамика микроструктура фазовый состав температуропроводность теплоемкость теплопроводность
Date of publication
09.12.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Kimizuka N., Isobe M., Nakamura M. et al. // J. Solid State Chem. 1993. V. 103. P. 394. https://doi.org/10.1006/jssc.1993.1115
  2. 2. Zhao L.-D., Pei Y.-L., Liu Y. et al. // J. Am. Ceram. Soc. 2011. V. 94. № 6. P. 1664. https://doi.org/10.1111/j.1551-2916.2011.04550.x
  3. 3. Zhang C., Pei Y., Zhao L.-D. et al. // J Eur. Ceram. Soc. 2014. V. 34. № 1. P. 63. https://doi.org/10.1016/j.jeurceramsoc.2013.08.001
  4. 4. Kondrat’eva O.N., Smirnova M.N., Nikiforova G.E. et al. // Nanosystems: Phys. Chem. Math. 2024. V. 15. № 5. P. 693. https://doi.org/10.17586/2220-8054-2024-15-5-693-701
  5. 5. Qu W.-W., Zhang X.-X., Yuan B.-F. et al. // Rare Met. 2018. V. 37. P. 79. https://doi.org/10.1007/s12598-017-0978-6
  6. 6. Guo H., Zhang C., Pei Y. et al. // J. Alloys Compd. 2014. V. 585. P. 404. https://doi.org/10.1016/j.jallcom.2013.09.169
  7. 7. Zhang L., Pei Y., Guo H. et al. // J. Alloys Compd. 2015. V. 623. P. 203. https://doi.org/10.1016/j.jallcom.2014.10.046
  8. 8. Narendranath S.B., Yadav A.K., Bhattacharyya D. et al. // ACS Appl. Mater. Interfaces. 2014. V. 6. № 15. P. 12321. https://doi.org/10.1021/am501976z
  9. 9. Смирнова М.Н., Кондратьева О.Н., Никифорова Г.Е. и др. // Журн. неорган. химии. 2023. Т. 68. № 5. С. 581. https://doi.org/10.31857/S0044457X22602383
  10. 10. Смирнова М.Н., Кондратьева О.Н., Никифорова Г.Е. и др. // Журн. неорган. химии. 2024. Т. 69. № 8. С. 1095. https://doi.org/10.31857/S0044457X24080012
  11. 11. Archer D.G. // J. Phys. Chem. Ref. Data. 1993. V. 22. № 6. P. 1441. http://dx.doi.org/10.1063/1.555931
  12. 12. Schlichting K.W., Padture N.P., Klemens P.G. // J. Mater. Sci. 2001. V. 36. P. 3003. https://doi.org/10.1023/A:1017970924312
  13. 13. Sasaki K., Suzuki A., Akasaka N. et al. // Int. J. Appl. Ceram. Technol. 2011. V. 8. № 2. P. 455. https://doi.org/10.1111/j.1744-7402.2009.02463.x
  14. 14. Mikuśkiewicz M., Moskal G., Stopyra M. et al. // J. Therm. Anal. Calorim. 2025 (in press). https://doi.org/10.1007/s10973-025-14133-8
  15. 15. Zhang X., Wu H., Pei Y. et al. // Acta Mater. 2017. V. 136. P. 235. http://dx.doi.org/10.1016/j.actamat.2017.07.012
  16. 16. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. № 7. P. 2083. https://doi.org/10.1021/je400316m
  17. 17. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  18. 18. Richet P., Fiquet G. // J. Geophys. Res. 1991. V. 96. № B1. P. 445. https://doi.org/10.1029/90JB02172
  19. 19. Klemens P.G., Gell M. // Mater. Sci. Eng. A. 1998. V. 245. P. 143. https://doi.org/10.1016/S0921-5093 (97)00846-0
  20. 20. Limarga A.M., Clarke D.R. // Appl. Phys. Lett. 2011. V. 98. № 21. P. 211906. https://doi.org/10.1063/1.3593383
  21. 21. Kingery W.D. Introduction to Ceramics, 1st ed. John Wiley & Sons Ltd., 1960.
  22. 22. Стильбанс Л.С. Физика полупроводников. М.: Изд-во “Советское радио”, 1967. 452 с.
  23. 23. Charvat F.R., Kingery W.D. // J. Am. Ceram. Soc. 1957. V. 40. № 9. P. 306. https://doi.org/10.1111/j.1151-2916.1957.tb12627.x
  24. 24. Lee D.W., Kingery W.D. // J. Am. Ceram. Soc. 1960. V. 43. № 11. P. 594. https://doi.org/10.1111/j.1151-2916.1960.tb13623.x
  25. 25. Hirata Y., Shimonosono T., Itoh S. et al. // Ceram. Int. 2017. V. 43. № 13. P. 10410. http://doi.org/10.1016/j.ceramint.2017.05.076
  26. 26. Clarke D.R., Phillpot S.R. // Mater. Today. 2005. V. 8. № 6. P. 22. https://doi.org/10.1016/S1369-7021 (05)70934-2
  27. 27. Wan C., Zhang W., Wang Y. et al. // Acta Mater. 2010. V. 58. № 18. P. 6166. https://doi.org/10.1016/j.actamat.2010.07.035
  28. 28. Di Girolamo G., Blasi C., Pilloni L. et al. // Ceram. Int. 2010. V. 36. № 4. P. 1389. https://doi.org/10.1016/j.ceramint.2010.02.007
  29. 29. Xu Z., He L., Mu R. et al. // J. Alloys Compd. 2009. V. 473. № 1–2. P. 509. https://doi.org/10.1016/j.jallcom.2008.06.064
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library