- PII
- S3034560XS0044457X25080043-1
- DOI
- 10.7868/S3034560X25080043
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 8
- Pages
- 1014-1020
- Abstract
- Previously undescribed complexes of tungstenophosphatometallates with copper ions Cu and hexamethylenetetramine of the composition Rb[PWOCu(HO)] · 9HO (I), Rb[PWOCu(CHN)] · 10HO (II), Rb[PWOZnCu(HO)] · 9HO (III) and Rb[PWOZnCu(CHN)] · 10HO (IV) have been synthesized. The results of chemical analysis, IR and electronic spectroscopy allow us to attribute the obtained compounds to tungstenophosphatometallates with a lacunary structure of the Keggin anion, in which one of the tungsten atoms is replaced by a 3d-element ion (copper or zinc). There is a shift of the absorption maximum of copper ions to the long-wavelength region of the spectrum when transitioning from [Cu(HO)] to [PWOCu(HO)], [PWOZnCu(HO)], [PWOCu(HMTA)] and [PWOZnCu(HMTA)], which is a result of the change in the ligand field strength in the inner coordination sphere of the complexes. Temperature dependences of EPR spectra show redistribution of line intensities due to the multi-minimum potential of the crystal field at the location of Cu ions. The height of the crystal field potential barrier for compounds III and IV is 27 and 13 cm, respectively, and depends on the ligand field strength of the immediate environment of Cu ions in the anion structure.
- Keywords
- гетерополивольфрамометаллаты лакунарная структура гексаметилентетрамин электронный парамагнитный резонанс спектроскопия
- Date of publication
- 09.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 35
References
- 1. Pope M.T. Heteropoly and Isopoly Oxometalates. Berlin: Springer-Verlag, 1983. 231 p.
- 2. Терещенко Д.С., Бузоверов М.Е., Глазунов Т.Ю. и др. // Журн. неорган. химии. 2023. Т. 68. № 9. С. 1312. https://doi.org/10.31857/S0044457X23601190
- 3. Мороз Я.А., Лозинский Н.С., Заритовский А.Н. и др. // Журн. общ. химии. 2023. Т. 93. № 7. С. 1139. https://doi.org/10.31857/S0044460X23070193
- 4. Мороз Я.А., Лозинский Н.С., Лопанов А.Н. и др. // Неорган. материалы. 2021. Т. 57. № 8. С. 878. https://doi.org/10.31857/S0002337X21080224
- 5. Yang M., Li J., Hui K. et al. // Dalton Trans. 2024. V. 53. P. 15412. https://doi.org/10.1039/D4DT01894J
- 6. Трофимова О.Ю., Пашанова К.И., Ершова И.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 9. С. 1154. https://doi.org/10.31857/S0044457X23600846
- 7. Qian D.-Q., Lin Yu-D., Xiao H.-P. et al. // Polyoxometalates. 2024. V. 3. P. 9140040. https://doi.org/10.26599/POM.2023.9140040
- 8. Choi J., Kim J.K., Park D. et al. // J. Mol. Catal. A: Chem. 2013. V. 371. P. 111. https://doi.org/10.1016/j.molcata.2013.01.035.choi2013.pdf
- 9. Song J., Luo Z., Britt D.K. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 16839. https://doi.org/10.1021/ja203695h
- 10. Azadi O., Taheri A., Babaei A. // Mater. Chem. Phys. 2023. V. 297. P. 127400. https://doi.org/10.1016/j.matchemphys.2023.127400
- 11. Roustaei S., Taheri A. // Preprint. 2022. Version 1 posted 21. https://doi.org/10.21203/rs.3.rs-2211059/v1
- 12. Lange L.E., Obendorf S.K. // ACS Appl. Mater. Interfaces. 2015. V. 7. P. 3974. https://doi.org/10.1021/am506510q.
- 13. Frenzel R.A., Romanelli G.P., Blanco M.N. et al. // J. Chem. Sci. 2015. V. 127. P. 123. https://doi.org/10.1007/s12039-014-0757-y
- 14. Sun J.Y., Wang Z.L., Zhang Z. et al. // Polyoxometalates. 2024. V. 3. № 1. Art. 9140039. https://doi.org/10.26599/POM.2023.9140039
- 15. Aramesh N., Yadollahi B. // Mater. Adv. 2024. V. 5. P. 5781. https://doi.org/10.1039/d4ma00178h File d4ma00178h
- 16. Zhang W., Liu R., Lv X. et al. // Molecules. 2023. V. 28. P. 6460. https://doi.org/10.3390/molecules28186460
- 17. Mozafari R., Heidarizadeh F. // J. Clust. Sci. 2016. V. 27. P. 1629. https://doi.org/10.1007/s10876-016-1023-x
- 18. Thompson J.A. Using theoretical chemistry to model the redox properties of polyoxometalates and their potential as ammonia synthesis catalysts. PhD thesis. University of Glasgow. 2024. 153 p.
- 19. Silva M.J.d., da Silva Andrade P.H. // Processes. 2024. V. 12. P. 2587. https://doi.org/10.3390/pr12112587
- 20. Hao X., Liu T., Ying J. et al. // Cryst. Growth Des. 2024. V. 24. P. 9735. https://doi.org/10.1021/acs.cgd.4c01268 SI cg4c01268_si_001
- 21. Samiey B., Cheng C.H., Wu J. // Materials. 2014. V. 7. P. 673. https://doi.org/10.3390/ma7020673
- 22. Лозинский Н.С., Лопанов А.Н., Мороз Я.А. и др. // Журн. неорган. химии. 2024. Т. 69. № 7. С. 1029. https://doi.org/10.1134/S0036023624600953
- 23. Воротынов А.М., Петраковский Г.А., Саблина К.А. и др. // Физика тв. тела. 2010. T. 52. № 11. C. 2259.
- 24. Шаповалов В.А., Житлухина Е.С., Ламонова К.В. и др. // Физика низких температур. 2014. Т. 40. № 5. С. 595.
- 25. Sruthi G., Shakeela K., Shanmugam R. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 3329. https://doi.org/10.1039/C9CP06284J
- 26. Shapovalov V.A., Zhitlukhina E.S., Lamonova K.V. et al. // J. Phys.: Condens. Matter. 2010. № 22. P. 245504.
- 27. Shapovalov V.A., Shapovalov V.V., Rafailovich M. et al. // J. Phys. Chem. C. 2013. № 117. P. 7830. https://doi.org/10.1021/jp311456a