RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

POLYOXOTUNGSTENPHOSPHATE COMPLEXES WITH HEXAMETHYLENETETRAMINE AND COPPER IONS

PII
S3034560XS0044457X25080043-1
DOI
10.7868/S3034560X25080043
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 8
Pages
1014-1020
Abstract
Previously undescribed complexes of tungstenophosphatometallates with copper ions Cu and hexamethylenetetramine of the composition Rb[PWOCu(HO)] · 9HO (I), Rb[PWOCu(CHN)] · 10HO (II), Rb[PWOZnCu(HO)] · 9HO (III) and Rb[PWOZnCu(CHN)] · 10HO (IV) have been synthesized. The results of chemical analysis, IR and electronic spectroscopy allow us to attribute the obtained compounds to tungstenophosphatometallates with a lacunary structure of the Keggin anion, in which one of the tungsten atoms is replaced by a 3d-element ion (copper or zinc). There is a shift of the absorption maximum of copper ions to the long-wavelength region of the spectrum when transitioning from [Cu(HO)] to [PWOCu(HO)], [PWOZnCu(HO)], [PWOCu(HMTA)] and [PWOZnCu(HMTA)], which is a result of the change in the ligand field strength in the inner coordination sphere of the complexes. Temperature dependences of EPR spectra show redistribution of line intensities due to the multi-minimum potential of the crystal field at the location of Cu ions. The height of the crystal field potential barrier for compounds III and IV is 27 and 13 cm, respectively, and depends on the ligand field strength of the immediate environment of Cu ions in the anion structure.
Keywords
гетерополивольфрамометаллаты лакунарная структура гексаметилентетрамин электронный парамагнитный резонанс спектроскопия
Date of publication
09.12.2025
Year of publication
2025
Number of purchasers
0
Views
35

References

  1. 1. Pope M.T. Heteropoly and Isopoly Oxometalates. Berlin: Springer-Verlag, 1983. 231 p.
  2. 2. Терещенко Д.С., Бузоверов М.Е., Глазунов Т.Ю. и др. // Журн. неорган. химии. 2023. Т. 68. № 9. С. 1312. https://doi.org/10.31857/S0044457X23601190
  3. 3. Мороз Я.А., Лозинский Н.С., Заритовский А.Н. и др. // Журн. общ. химии. 2023. Т. 93. № 7. С. 1139. https://doi.org/10.31857/S0044460X23070193
  4. 4. Мороз Я.А., Лозинский Н.С., Лопанов А.Н. и др. // Неорган. материалы. 2021. Т. 57. № 8. С. 878. https://doi.org/10.31857/S0002337X21080224
  5. 5. Yang M., Li J., Hui K. et al. // Dalton Trans. 2024. V. 53. P. 15412. https://doi.org/10.1039/D4DT01894J
  6. 6. Трофимова О.Ю., Пашанова К.И., Ершова И.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 9. С. 1154. https://doi.org/10.31857/S0044457X23600846
  7. 7. Qian D.-Q., Lin Yu-D., Xiao H.-P. et al. // Polyoxometalates. 2024. V. 3. P. 9140040. https://doi.org/10.26599/POM.2023.9140040
  8. 8. Choi J., Kim J.K., Park D. et al. // J. Mol. Catal. A: Chem. 2013. V. 371. P. 111. https://doi.org/10.1016/j.molcata.2013.01.035.choi2013.pdf
  9. 9. Song J., Luo Z., Britt D.K. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 16839. https://doi.org/10.1021/ja203695h
  10. 10. Azadi O., Taheri A., Babaei A. // Mater. Chem. Phys. 2023. V. 297. P. 127400. https://doi.org/10.1016/j.matchemphys.2023.127400
  11. 11. Roustaei S., Taheri A. // Preprint. 2022. Version 1 posted 21. https://doi.org/10.21203/rs.3.rs-2211059/v1
  12. 12. Lange L.E., Obendorf S.K. // ACS Appl. Mater. Interfaces. 2015. V. 7. P. 3974. https://doi.org/10.1021/am506510q.
  13. 13. Frenzel R.A., Romanelli G.P., Blanco M.N. et al. // J. Chem. Sci. 2015. V. 127. P. 123. https://doi.org/10.1007/s12039-014-0757-y
  14. 14. Sun J.Y., Wang Z.L., Zhang Z. et al. // Polyoxometalates. 2024. V. 3. № 1. Art. 9140039. https://doi.org/10.26599/POM.2023.9140039
  15. 15. Aramesh N., Yadollahi B. // Mater. Adv. 2024. V. 5. P. 5781. https://doi.org/10.1039/d4ma00178h File d4ma00178h
  16. 16. Zhang W., Liu R., Lv X. et al. // Molecules. 2023. V. 28. P. 6460. https://doi.org/10.3390/molecules28186460
  17. 17. Mozafari R., Heidarizadeh F. // J. Clust. Sci. 2016. V. 27. P. 1629. https://doi.org/10.1007/s10876-016-1023-x
  18. 18. Thompson J.A. Using theoretical chemistry to model the redox properties of polyoxometalates and their potential as ammonia synthesis catalysts. PhD thesis. University of Glasgow. 2024. 153 p.
  19. 19. Silva M.J.d., da Silva Andrade P.H. // Processes. 2024. V. 12. P. 2587. https://doi.org/10.3390/pr12112587
  20. 20. Hao X., Liu T., Ying J. et al. // Cryst. Growth Des. 2024. V. 24. P. 9735. https://doi.org/10.1021/acs.cgd.4c01268 SI cg4c01268_si_001
  21. 21. Samiey B., Cheng C.H., Wu J. // Materials. 2014. V. 7. P. 673. https://doi.org/10.3390/ma7020673
  22. 22. Лозинский Н.С., Лопанов А.Н., Мороз Я.А. и др. // Журн. неорган. химии. 2024. Т. 69. № 7. С. 1029. https://doi.org/10.1134/S0036023624600953
  23. 23. Воротынов А.М., Петраковский Г.А., Саблина К.А. и др. // Физика тв. тела. 2010. T. 52. № 11. C. 2259.
  24. 24. Шаповалов В.А., Житлухина Е.С., Ламонова К.В. и  др. // Физика низких температур. 2014. Т. 40. № 5. С. 595.
  25. 25. Sruthi G., Shakeela K., Shanmugam R. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 3329. https://doi.org/10.1039/C9CP06284J
  26. 26. Shapovalov V.A., Zhitlukhina E.S., Lamonova K.V. et al. // J. Phys.: Condens. Matter. 2010. № 22. P. 245504.
  27. 27. Shapovalov V.A., Shapovalov V.V., Rafailovich M. et al. // J. Phys. Chem. C. 2013. № 117. P. 7830. https://doi.org/10.1021/jp311456a
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library