RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Subsolidus phase equilibria in the Ni–Mn–Ga–Sb and Ni–Mn–In–Sb systems

PII
S3034560XS0044457X25060119-1
DOI
10.7868/S3034560X25060119
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 6
Pages
829-835
Abstract
The analysis of phase equilibria in the Ni–Mn–Ga–Sb and Ni–Mn–In–Sb systems in the absence of melt is carried out. The method of topological modeling based on the concentration diagrams of the ternary systems Ni–Mn–Sb, Ni–Mn–Ga, Ni–Mn–In, Ni–Ga–Sb, Ni–In–Sb, Mn–Ga–Sb, Mn–In–Sb and fragmentary experimental data on phase equilibria involving the Heusler intermetallics Ni2Mn1+x(Ga,Sb)1–x and Ni2Mn1+x(In,Sb)1–x are constructed isobaric-isothermal subsolidus concentration diagrams of the quaternary systems Ni–Mn–Ga–Sb and Ni–Mn–In–Sb. Their main differences are shown.
Keywords
фазовые диаграммы твердые растворы многокомпонентные системы
Date of publication
16.06.2025
Year of publication
2025
Number of purchasers
0
Views
59

References

  1. 1. Tian F., Zeng Y., Xu M. et al. // Appl. Phys. Lett. 2015. V. 107. № 1. P. 012406. https://doi.org/10.1063/1.4926411
  2. 2. Tian F., Cao K., Zhang Y. et al. // Sci. Rep. 2016. V. 6. P. 30801. https://doi.org/10.1038/srep30801
  3. 3. Liu Z.H., Askoy S., Acet M. // J. Appl. Phys. 2009. V. 105. № 3. Р. 033913. https://doi.org/10.1063/1.3075821
  4. 4. Liu Z., Wu Z., Yang H. et al. // Intermetallics. 2010. V. 18. № 8. P. 1690. https://doi.org/ 10.1016/j.intermet.2010.05.007
  5. 5. Yu S.Y., Yan S.S., Zhao L. et al. // J. Magn. Magn. Mater. 2010. V. 322. № 17. P. 2541. https://doi.org/10.1016/j.jmmm.2010.03.017
  6. 6. Yu S.Y., Wei J.J., Kang S.S. et al. // J. Alloys Compd. 2014. V. 586. P. 328. https://doi.org/10.1016/j.jallcom.2013.10.072
  7. 7. Liu H., Liu Z., Li G., Ma X. // Solid State Commun. 2016. V. 243. P. 23. https://doi.org/10.1016/j.ssc.2016.06.005
  8. 8. Zhang Y., Wang J., Ke X. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. № 27. P. 18484. https://doi.org/10.1039/C8CP02720J
  9. 9. Tian F., Cao K., Chen K. et al. // J. Appl. Phys. 2024. V. 135. Р. 023904. https://doi.org/10.1063/5.0189339
  10. 10. Krenke T., Acet M., Wassermann E.F. et al. // Phys. Rev. B. 2006. V. 73. Р. 174413. https://doi.org/10.1103/PhysRevB.73.174413
  11. 11. Guo C., Du Z. // Intermetallics. 2005. V. 13. № 5. P. 525. https://doi.org/10.1016/j.intermet.2004.09.002
  12. 12. Franke P. // Int. J. Mater. Res. 2007. V. 98. № 10. P. 954. https://doi.org/10.3139/146.101558
  13. 13. Hao L., Bigdeli S., Xiong W. // J. Phase Equilib. Diff. 2024. V. 45. № 6. P. 1182. https://doi.org/10.1007/s11669-024-01165-0
  14. 14. Zhang Y., Li C., Du Z., Guo C. // CALPHAD. 2008. V. 32. № 2. P. 378. https://doi.org/10.1016/j.calphad.2008.02.001
  15. 15. Cao Z., Takaku Y., Ohnuma I. et al. // Rare Met. 2008. V. 27. № 4. P. 384. https://doi.org/10.1016/s1001-0521 (08)60150-3
  16. 16. Okamoto H. // J. Phase Equilib. Diff. 2009. V. 30. № 3. P. 301. https://doi.org/10.1007/s11669-009-9513-2
  17. 17. Kainzbauer P., Richter K.W., Ipser H. // J. Phase Equilib. 2016. V. 37. № 4. P. 459. https://doi.org/10.1007/s11669-016-0470-2
  18. 18. Yuan W.X., Qiao Z.Y., Ipser H., Eriksson G. // J. Phase Equilib. 2004. V. 25. № 1. P. 68. https://doi.org/10.1361/10549710417696
  19. 19. Okamoto H. // J. Phase Equilib. 2010. V. 31. № 6. P. 575. https://doi.org/10.1007/s11669-010-9785-6
  20. 20. Cao Z-M., Shi X., Xie W. et al. // Rare Met. 2015. V. 34. № 12. P. 864. https://doi.org/10.1007/s12598-014-0365-5
  21. 21. Chang C.-C. B., Kao C.R. // Materials. 2024. V. 17. P. 883. https://doi.org/10.3390/ma17040883
  22. 22. Hao L., Shen C., Fortunato N.M. et al. // CALPHAD. 2025. V. 88. P. 102797. https://doi.org/10.1016/j.calphad.2024.102797
  23. 23. Okamoto H. // J. Phase Equilib. 2003. V. 24. № 4. P. 379. https://doi.org/10.1361/105497103770330479
  24. 24. Minakuchi K., Umetsu R.Y., Ishida K., Kainuma R. // J. Alloys. Compd. 2012. V. 537. P. 332. https://doi.org/10.1016/j.jallcom.2012.04.065
  25. 25. Tillard M., Belin C. // Intermetallics. 2012. V. 29. P. 147. https://doi.org/10.1016/j.intermet.2012.05.011
  26. 26. Okamoto H. // J. Phase Equilib. Diff. 2014. V. 35. № 1. P. 105. https://doi.org/10.1007/s11669-013-0262-x
  27. 27. Hao L., Xiong W. // CALPHAD. 2020. V. 68. P. 101722. https://doi.org/10.1016/j.calphad.2019.101722
  28. 28. Wang L.Y., Wang J., Zhu C.F. et al. // Thermochim. Acta. 2015. V. 607. P. 74. https://doi.org/10.1016/j.tca.2015.03.022
  29. 29. Srinivaas M.R., Kumar K.C.H. // CALPHAD. 2022. V. 76. P. 102389. https://doi.org/10.1016/j.calphad.2021.102389
  30. 30. Lysenko V.A. // J. Alloys. Compd. 2019. V. 776. P. 850. https://doi.org/10.1016/j.jallcom.2018.10.223
  31. 31. Miyamoto T., Nagasako M., Kainuma R. // J. Alloys Compd. 2019. V. 772. P. 64. https://doi.org/10.1016/j.jallcom.2018.09.035
  32. 32. Ao W.-Q., Yu H.-Z., Liu F.-L. et al. // J. Min. Metall., Sect. B: Metall. 2019. V. 55. № 2. P. 147. https://doi.org/10.2298/JMMB181104019A
  33. 33. Wedel C., Itagaki K. // J. Phase Equilib. 2001. V. 22. № 3. P. 324. https://doi.org/10.1361/105497101770338833
  34. 34. Gupta K.P. // J. Phase Equilib. Diff. 2001. V. 29. № 1. P. 101. https://doi.org/10.1007/s11669-007-9017-x
  35. 35. Yang S., Wang C., Liu X. // Intermetallics. 2012. V. 25. P. 101. https://doi.org/10.1016/j.intermet.2011.12.009
  36. 36. Tiwari N., Pal V., Das S., Paliwal M. // J. Electron. Mater. 2024. V. 53. № 4. P. 1773. https://doi.org/10.1007/s11664-023-10882-0
  37. 37. Miyamoto T., Nagasako M., Kainuma R. // J. Alloys. Compd. 2013. V. 549. P. 57. https://doi.org/10.1016/j.jallcom.2012.08.128
  38. 38. Le Clanche M.C., Députier S., Jégaden J.C. et al. // J. Alloys Compd. 1994. V. 206. P. 21. https://doi.org/10.1016/0925-8388 (94)90006-X
  39. 39. Markovski S.L., Micke K., Richter K.W. et al. // J. Alloys Compd. 2000. V. 302. P. 128. https://doi.org/10.1016/S0925-8388 (99)00575-7
  40. 40. Roy N., Kumari S., Sikdar R. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. № 14. P. 1410. https://doi.org/10.1002/ejic.202100064
  41. 41. Cao Z., Xie W., Wang K. et al. // J. Electron. Mater. 2013. V. 42. № 8. P. 2615. https://doi.org/10.1007/s11664-013-2599-7
  42. 42. Маренкин С.Ф., Трухан В.М., Труханов С.В. и др. // Журн. неорган. химии. 2013. Т. 58. № 11. С. 1478. https://doi.org/10.7868/S0044457X13110135
  43. 43. Маренкин С.Ф., Аронов А.Н., Федорченко И.В. и др. // Патент 2019. RU 2700896 C1.
  44. 44. Marenkin S.F., Korkin D.E., Jaloliddinzoda M. et al. // Mater. Chem. Phys. 2023. V. 300. Р. 127547. https://doi.org/10.1016/j.matchemphys.2023.127549
  45. 45. Сафаралиев Т.И., Вагабова Л.К. // Изв. АН СССР. Сер. Неорган. материалы. 1988. Т. 24. С. 457.
  46. 46. Liu W.E., Mohney S.E. // Mater. Sci. Eng. B. 2003. V. 103. P. 189. https://doi.org/10.1016/S0921-5107 (03)00214-9
  47. 47. Seshu Bai V., Rama Rao K.V.S. // Phys. Status Solidi A. 1982. V. 73. P. K303.
  48. 48. Pashkova O.N., Oveshnikov L.N., Ril A.I. et al. // Russ. J. Inorg. Chem. 2024. V. 69. № 7. P. 965. https://doi.org/10.1134/S003602362460076X
  49. 49. Смирнова М.Н., Нипан Г.Д., Пашкова О.Н., Никифорова Г.Е. // Докл. РАН. Химия, науки о материалах. 2024. Т. 519. С. 32.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library