RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

The study of the formation of solid solutions of lithium in iridium

PII
S3034560XS0044457X25060065-1
DOI
10.7868/S3034560X25060065
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 6
Pages
784-791
Abstract
The interaction in the Li-Ir system using Li3N as a lithium source was studied depending on the temperature, heat treatment time and total pressure in the system. Using X-ray phase analysis (XRD), it was shown that heat treatment of a powder mixture of Li3N and Ir in a graphite or BN crucible in the temperature range of 800–1200°C leads to the formation of a substitution solid solution of Ir(Li), with the lithium content decreasing with increasing temperature, heat treatment time and decreasing total pressure in the system. The maximum lithium content in iridium reached 6.2% at. It was shown that the use of a closed BN container increases the yield of the Ir(Li) solid solution. The use of graphite or BN crucibles prevents the formation of intermetallic compounds of the Li-Ir system.
Keywords
иридий нитрид лития твердые растворы замещения
Date of publication
16.06.2025
Year of publication
2025
Number of purchasers
0
Views
51

References

  1. 1. Abdou M.A., Team T.A., Ying A. et al. // Fusion Eng. Des. 2001. V. 54. P. 181. https://doi.org/10.1016/S0920-3796 (00)00433-6
  2. 2. Vertkov A.V., Zharkov M.Yu., Lyublinskii I.E. et al. // Plasma Phys. Rep. 2021. V. 47. P. 1245. https://doi.org/10.1134/S1063780X21110258
  3. 3. Magee C.B. A study of the synthesis and properties of transition-metal hydryls / Final Summary Report, University of Denver, Denver, Colorado, USA, 1964. https://doi.org/10.2172/4675637
  4. 4. Varma S.K., Chang F.C., Magee C.B. // J. Less Common Met. 1978. V. 60. P. P47. https://doi.org/10.1016/0022-5088 (78)90189-3
  5. 5. Donkersloot H.C., Van Vucht J.H.N. // J. Less Common Met. 1976. V. 50. P. 279. https://doi.org/10.1016/0022-5088 (76)90167-3
  6. 6. Loebich O., Raub Ch.J. // Platinum Met. Rev. 1981. V. 25. P. 113. https://doi.org/10.1595/003214081X253113120
  7. 7. Zhang J., Hu Y.H. // Top. Catal. 2015. V. 58. P. 386. https://doi.org/10.1007/s11244-015-0379-8
  8. 8. Duan L., Liu Q., Li Y. et al. // J. Phys. Chem. C. 2009. V. 113. P. 13386. https://doi.org/10.1021/jp901510j
  9. 9. Yonco R.M., Veleckis E., Maroni V.A. // J. Nucl. Mater. 1975. V. 57. P. 317. https://doi.org/10.1016/0022-3115 (75)90216-0
  10. 10. Holleck H. Binäre und ternäre Carbide und Nitride der Übergangsmetalle und ihre Phasenbeziehungen / Habilitationsschrift, Institut für Material- und Festkörperforschung, Kernforschungszentrum Karlsruhe, Germany, 1981. https://publikationen.bibliothek.kit.edu/200015609
  11. 11. Банных Д.А., Голосов М.А., Лозанов В.В. и др. // Неорган. материалы. 2021. Т. 57. № 9. С. 925. https://doi.org/10.31857/S0002337X21090025
  12. 12. Казенас Е.К., Цветков Ю.В. Испарение карбидов / М.: КРАСАНД, 2017. 800 с.
  13. 13. Kim J., Yamasue E., Ichitsubo T. et al. // J. Electroanal. Chem. 2017. V. 799. P. 263. https://doi.org/10.1016/j.jelechem.2017.06.017
  14. 14. Kim J., Yamasue E., Okumura H. et al. // J. Alloys Compd. 2017. V. 707. P. 172. https://doi.org/10.1016/j.jallcom.2017.01.050
  15. 15. Rybin V., Lozanov V., Utkin A. et al. // J. Alloys Compd. 2019. V. 775. P. 503. https://doi.org/10.1016/j.jallcom.2018.10.118
  16. 16. Rabenau A., Schulz H. // J. Less Common Met. 1976. V. 50. P. 155. https://doi.org/10.1016/0022-5088 (76)90263-0
  17. 17. Pepinsky R. // Z. Kristallogr. – Cryst. Mater. 1940. V. 102. P. 119. https://doi.org/10.1524/zkri.1940.102.1.119
  18. 18. Cordero B., Gómez V., Platero-Prats A.E. et al. // Dalton Trans. 2008. P. 2832. https://doi.org/10.1039/b801115j
  19. 19. Даркен Л.С., Гурри Р.В. Физическая химия металлов / Пер. с англ. под ред. Сироты Н.Н., М.: Металлургиздат, 1960. 582 с.
  20. 20. Ding Z., Qiu L., Li Y. et al. // Mater. Lett. 2013. V. 107. P. 382. https://doi.org/10.1016/j.matlet.2013.06.037
  21. 21. Lozanov V.V., Baklanova N.I., Bulina N.V. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 13062. https://doi.org/10.1021/acsami.8b01418
  22. 22. Yamane H., Kikkawa S., Koizumi M. // J. Solid State Chem. 1987. V. 71. P. 1. https://doi.org/10.1016/0022-4596 (87)90135-6
  23. 23. Cenzual K., Gelato L.M., Penzo M. et al. // Acta Crystallogr., Sect. B: Struct. Sci. 1991. V. 47. P. 433. https://doi.org/10.1107/S0108768191000903
  24. 24. Зюбин А.С., Зюбина Т.С., Добровольский Ю.А. и др. // Журн. неорган. химии. 2016. Т. 61. № 11. С. 1476. https://doi.org/10.7868/S0044457X16110234
  25. 25. Зюбин А.С., Зюбина Т.С., Добровольский Ю.А. и др. // Журн. неорган. химии. 2017. Т. 62. № 9. С. 1189. https://doi.org/10.7868/S0044457X17090082
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library