RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

COPPER FERRITE NANOPARTICLES: SYNTHESIS AND STUDY OF THEIR PHOTOCATALYTIC ACTIVITY

PII
S3034560XS0044457X25040124-1
DOI
10.7868/S3034560X25040124
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
583-596
Abstract
Magnetic copper ferrite (II) nanoparticles are promising materials for biomedical, electronic and photocatalytic applications. In this work, homogeneous spherical CuFeO nanoparticles with a size of 18.3 ± 0.4 nm and a band gap width of 2.37 eV were obtained by anion-exchange resin precipitation using AV-17-8 in OH form in the presence of dextran-40. The photocatalytic activity of the obtained material was studied on the example of photodegradation of a widely used anionic dye – indigo carmine in the presence of sacrificial reagents: sodium citrate, carbonate and hydrocarbonate, hydrogen peroxide. The effectiveness of the joint application of electron donors - sodium hydrocarbonate and citrate – in reducing the probability of recombination of photogenerated holes and electrons has been demonstrated. The kinetic parameters of the process were determined (pseudo-zero order, = 3.6 × 10 mol/(l × min), = 75.8 ± 2.3 min) and its mechanism was elucidated. The intermediates of the photocatalytic oxidation of indigocarmine were determined by NMR.
Keywords
феррит меди(II) фотокатализ анионообменный синтез магнитные наночастицы
Date of publication
15.04.2025
Year of publication
2025
Number of purchasers
0
Views
44

References

  1. 1. Akita M., Ceroni P., Stephenson C.R., Masson G. // J. Org. Chem. 2023. V. 88. P. 6281. https://doi.org/10.1021/acs.joc.3c00812
  2. 2. Prentice C., Martin A.E., Morrison J. et al. // Org. Biomol. Chem. 2023. V. 21. P. 3307. https://doi.org/10.1039/D30B00231D
  3. 3. Huang Z., Luo N., Zhang C. et al. // Nat. Rev. Chem. 2022. V. 6. P. 197. https://doi.org/10.1038/s41570-022-00359-9
  4. 4. Krasilnikov V.N., Zhukov V.P., Perelyaeva L.A. et al. // Phys. Solid State. 2013. V. 55. P. 1903. https://doi.org/10.1134/S1063783413090199
  5. 5. Kumar S.G., Rao K.S.R.K. // RSC Advances. 2015. V. 5. P. 3306. https://doi.org/10.1039/C4RA13299H
  6. 6. Chen Y., Soler L., Cazorla C. et al. // Nat. Commun. 2023. V. 14. P. 6165. https://doi.org/10.1038/s41467-023-41976-2
  7. 7. Kim S.P., Choi M.Y., Choi H.C. // Mater. Res. Bull. 2016. V. 74. P. 85. https://doi.org/10.1016/j.materresbull.2015.10.024
  8. 8. Liu X., Zhai H., Wang P. et al. // Catal. Sci. Technol. 2019. V. 9. P. 652. https://doi.org/10.1039/C8CY02375A
  9. 9. Al-Alotaibi A.L., Altamimi N., Howsawi E. et al. // J. Inorg. Organomet. Polym. 2021. V. 31. P. 2017. https://doi.org/10.1007/s10904-021-01939-w
  10. 10. Sarkar N., Gadore V., Mishra S.R. et al. // J. Inorg. Organomet. Polym. 2024. P. 1. https://doi.org/10.1007/s10904-024-03132-1
  11. 11. Basu M., Sinha A.K., Pradhan M. et al. // Environ. Sci. Technol. 2010. V. 44. P. 6313. https://doi.org/10.1021/es101323w
  12. 12. Adinarayan D., Annapurna N., Mohan B.S., Douglas P. // Desalination and Water Treatment. 2024. V. 320. P. 100593. https://doi.org/10.1016/j.dwt.2024.100593
  13. 13. Peng H.-J., Zheng P.-Q., Chao H.-Y. et al. // RSC Adv. 2020 V. 10. P. 551. https://doi.org/10.1039/C9RA08801F
  14. 14. Ciriminna R., Delisi R., Parrino F. et al. // Chem. Commun. 2017. V. 53. P. 7521. https://doi.org/10.1039/C7CC04242F
  15. 15. Nasri R., Larbi T., Khemir H. et al. // Inorg. Chem. Commun. 2020. V. 119. P. 108113. https://doi.org/10.1016/j.inoche.2020.108113
  16. 16. Wang L., Wang K., He T. et al. // ACS Sustainable Chem. Eng. 2020. V. 8. P. 16048. https://doi.org/10.1039/C3RA46079G
  17. 17. Cao X., Chen Y., Jiao S. et al. // Nanoscale. 2014. V. 6. P. 12366. https://doi.org/10.1039/C4NR03729D
  18. 18. Nikolic V.N., Vasic M.M., Kisic D. // J. Solid State Chem. 2019. V. 275. P. 187. https://doi.org/10.1016/j.jsse.2019.04.007
  19. 19. Ponhan W., Maensiri S. // Solid State Sci. 2009. V. 11. P. 479. https://doi.org/10.1016/j.solidstatesciences.2008.06.019
  20. 20. Xiao Z., Jin S., Wang X. et al. // J. Mater. Chem. 2012. V. 22. P. 16598. https://doi.org/10.1039/C21M32869K.
  21. 21. Teraoka Y., Shangguan W.F., Kagawa S. // Catal. Surv. Jpn. 1998. V. 2. P. 155. https://doi.org/10.1163/156856700X00246
  22. 22. Saikova S., Pavlikov A., Karpov D. et al. // Materials. 2023. V. 16. P. 2318. https://doi.org/10.3390/ma1606231843
  23. 23. Nemkova D.I., Saikova S.V., Krolikov A.E. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1. https://doi.org/10.1134/S0036023623603069
  24. 24. Yusmar A., Armitasari L., Suharyadi E. // Mater. Today: Proceedings. 2018. V. 5. P. 14955. https://doi.org/10.1016/j.matpr.2018.04.037
  25. 25. Sangeehta M., Ambika S., Madhan D. et al. // J. Mater. Sci. - Mater. Electron. 2024. V. 35. P. 368. https://doi.org/10.1007/s10854-024-12076-8
  26. 26. Zhang Z., Cai W., Rong S. et al. // Catalysts. 2022. V. 12. P. 910. https://doi.org/10.3390/catal12080910
  27. 27. Sonu Sharma S., Dutta V. et al. // Appl. Nanosci. 2023. V. 13. P. 3693. https://doi.org/10.1007/s13204-022-02500-y
  28. 28. Amuthan T., Sanjeevi R., Kannan G.R., Sridevi A. // Physica B: Condens. Matter. 2022. V. 638. P. 413842. https://doi.org/10.1016/j.physb.2022.413842
  29. 29. Li X., Shi C., Feng Z. et al. // J. Alloys Compd. 2023. V. 946. P. 169467. https://doi.org/10.1016/j.jallcom.2023.169467
  30. 30. Dutta V., Sudhaik A., Khan A.A.P. et al. // Mater. Res. Bull. 2023. V. 164. P. 112238. https://doi.org/10.1016/j.materresbull.2023.112238
  31. 31. Keerthana S., Yuvalkumar R., Ravi G. et al. // Environ. Res. 2021. V. 200. P. 111528. https://doi.org/10.1016/j.envres.2021.111528
  32. 32. Karenkova A.Y., Medvedeva T.B., Gromov N.V. et al. // Catalysts. 2021. V. 11. P. 870. https://doi.org/10.3390/catal11070870
  33. 33. Kypenkoa A.O. Фотокаталитическое получение водорода из водных растворов неорганических соединений и органических субстратов растительного происхождения под действием видимого света. Новосибирск: Институт катализа им. Г.К. Борескова СО РАН, 2021. 124 с.
  34. 34. Soio-Arreola A., Huerta-Flores A.M., Mora-Hernández J.M. et al. // J. Photochem. Photobiol., A: Chem. 2018. V. 357. P. 20. https://doi.org/10.1016/j.jphotochem.2018.02.016
  35. 35. Sarhiyan K., Bar-Ziv R., Marks V. et al. // Chem. A. Eur. J. 2021. V. 27. P. 15936. https://doi.org/10.1002/chem.202103040
  36. 36. Ahmad H., Kamarudin S.K., Minggu L.J., Kassim M. // Renew. Sustain. Energy Rev. 2015. V. 43. P. 599. https://doi.org/10.1016/j.rser.2014.10.101
  37. 37. Christoforidis K.C., Fornasiero P. // Chem. Cat. Chem. 2017. V. 9. P. 1523. https://doi.org/10.1002/cctc.201601659
  38. 38. Cañkosa C.B., Пашков I.J., Пантелеев M.B. Реакционно-ионообменные процессы извлечения цветных металлов и синтеза дисперсных материалов. Красноярск: Сиб. федер. ун-т, 2018. 198 с.
  39. 39. Aphalo P.J., Albert A., Björn L.O. et al. Beyond the Visible: A handbook of best practice in plant UV photobiology. Helsinki: University of Helsinki, Division of Plant Biology, 2012. 174 p.
  40. 40. Saikova S.V., Trofimova T.V., Pavlikov A.Y., Samolo A.S. // Russ. J. Inorg. Chem. 2020. V. 65. P. 291. https://doi.org/10.1134/S0036023623003010
  41. 41. Finch G.I., Sinha A.P.B., Sinha K.P. // Proc. Royal Soc. A: Math. Phys. Eng. Sci. 1957. V. 242. P. 28. https://doi.org/10.1098/rspa.1957.0151
  42. 42. Balagurov A.M., Bobrikov I.A., Maschenko M.S. et al. // Crystallogr. Rep. 2013. V. 58. P. 710.
  43. 43. Makuta P., Pacia M., Macyk W. // J. Phys. Chem. Lett. 2018, V. 9. P. 6814. https://doi.org/10.1021/acs.jpelett.8b02892
  44. 44. Василевский А.М., Конопаев Г.А., Панов М.Ф. // Оптико-физические методы исследований: Местоучебная практика и лабораторный работа. СПб.: Изд-во СПбГЭТУ "ЛЭТИ", 2011. 56 с.
  45. 45. Zander J., Fink M.F., Attia M. et al. // Sustain. Energy Fuels. 2024. V. 8. P. 4848. https://doi.org/10.1039/D4SE00968A
  46. 46. Udlin M.R., Khan M.R., Rahman M.W. et al. // React. Kinet. Mech. Catal. 2015. V. 116. P. 589. https://doi.org/10.1007/s11144-015-0911-7
  47. 47. Lu C., Bao Z., Qin C. et al. // RSC Adv. 2016. V. 6. P. 110155. https://doi.org/10.1039/C6RA23970F
  48. 48. Krieger W., Bayraktar E., Mierka O. et al. // AIChE J. 2020. V. 66. P. e16953. https://doi.org/10.1002/aic.1695
  49. 49. Manjunatha J.G.G. // J. Food. Drug. Anal. 2018. V. 26. P. 292. https://doi.org/10.1016/j.jtda.2017.05.002
  50. 50. Braz S., Justino L.L.G., Ramos M.L., Fausto R. // Molecules. 2024. V. 29. P. 3223. https://doi.org/10.3390/molecules29133223
  51. 51. Tavallali H., Deilamy-Rad G., Moaddeli A., Asghari K. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2017. V. 183. P. 319. https://doi.org/10.1016/j.saa.2017.04.050
  52. 52. Madunkouwa I.A., Grassian V.H. // J. Am. Chem. Soc. 2010. V. 132. P. 14986. https://doi.org/10.1021/jaj106091q
  53. 53. Field T.B., McCourt J.L., McBryde W.A.E. // Can. J. Chem. 1974. V. 52. P. 3119. https://doi.org/10.1139/v74-458
  54. 54. Dheyab M.A., Aziz A.A., Jameel M.S. et al. // Sci. Rep. 2020. V. 10. P. 10793. https://doi.org/10.1038/s41598-020-67869-8
  55. 55. Goodarzi A., Sahoo Y., Swihart M.T. et al. // MRS Online Proc. Library. 2003. V. 789. P. 23. https://doi.org/10.1557/PROC-789-N6.6
  56. 56. Quici N., Morgada M.E., Gettar R.T. et al. // Appl. Catal. B. 2007. V. 71. P. 117. https://doi.org/10.1016/j.apcatb.2006.09.001
  57. 57. Liu Y., He X., Duan X. et al. // Chem. Eng. J. 2015. V. 276. P. 113. https://doi.org/10.1016/j.cej.2015.04.048
  58. 58. Tomina E.V., Sladkopevtsev B.V., Tien N.A. et al. // Inorg. Mater. 2023. V. 59. P. 1363. https://doi.org/10.1134/S0020168523130010
  59. 59. Томина Е., Куркин Н., Конкина Д. // Экология и промышленность России. 2022. T. 26. C. 17. https://doi.org/10.18412/1816-0395-2022-5-17-21
  60. 60. Meichtyn J.M., Quici N., Maillou G., Litter M.I. // Appl. Catal. B: Environ. 2011. V. 102. P. 555. https://doi.org/10.1016/j.apcatb.2010.12.038
  61. 61. Haleem A., Ullah M., Shah A. et al. // Water. 2024. V. 16. P. 1588. https://doi.org/10.3390/w16111588
  62. 62. Yang D., Ni X., Chen W., Weng Z. // J. Photochem. Photobiol., A: Chem. 2008. V. 195. P. 323. https://doi.org/10.1016/j.jphotochem.2007.10.020
  63. 63. Cano M., Solis M., Diaz J. et al. // African J. Biotech. 2011. V. 10. P. 12224.
  64. 64. Ramos R.O., Albuquerque M.V.C. Lopes W. S. et al. // J. Water Process. Eng. 2020. V. 37. P. 101535. https://doi.org/10.1016/j.jwpe.2020.101535
  65. 65. Hernández-Gordillo A., Rodríguez-González V., Oros-Ruiz S. // Catalysis Today. 2016. V. 266. P. 27. https://doi.org/10.1016/j.cattod.2015.09.001
  66. 66. Crema A.P.S. Piazza Borges L.D., Micke G.A. et al. // Chemosphere. 2019. V. 244. P. 125502. https://doi.org/10.1016/j.chemosphere.2019.125502
  67. 67. Terres J., Battisti R., Andreaus J. et al. // Biocatal. Biotransform. 2014. V. 32. P. 64. https://doi.org/10.3109/10242422.2013.873416
  68. 68. Vautier M., Guillard C., Herrmann J. M. // J. Catal. 2001. V. 201. P. 46. https://doi.org/10.1006/jcat.2001.3232
  69. 69. Jefferson W.A., Hu C. Song D // ACS Omega. 2017. V. 2. P. 6728. https://doi.org/10.1021/acsomega.7b00321
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library