RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

SURFACE DEGRADATION OF CERAMIC MATERIAL BASED ON THE ZrB-HfB-SiC SYSTEM UNDER THE INFLUENCE OF A SUBSONIC FLOW OF DISSOCIATED NITROGEN CONTAINING 5 mol. % CO

PII
S3034560X25100191-1
DOI
10.7868/S3034560X25100191
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 10
Pages
1417-1427
Abstract
Ultra-high-temperature ceramics based on zirconium and hafnium diborides are of great scientific and technical interest, as they can be very promising, including as components of descent vehicles for space exploration. To study the behavior of these ceramics under the influence of high-speed flows of dissociated gases of complex composition and to determine the effect of modifying the ZrB-HfB-SiC system with carbon nanotubes, the process of surface degradation under the influence of a subsonic flow of dissociated nitrogen containing 5 mol. % CO was examined. Despite the relatively low CO content in the nitrogen plasma, the surface oxidation process dominated the conversion of the initial ZrB/HfB into solid solutions based on monocarbonitrides of these metals. In this case, it was noted that a protective layer of silicate glass does not form on the surface, unlike similar materials under the influence of subsonic flows of dissociated air at temperatures
Keywords
UHTC HfB ZrB SiC деградация индукционный плазмотрон N—CO-плазма
Date of publication
01.10.2025
Year of publication
2025
Number of purchasers
0
Views
61

References

  1. 1. Simonenko E.P., Sevast’yanov D. V., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 14. P. 1669. https://doi.org/10.1134/S003602361340039
  2. 2. Squire T.H., Marschall J. // J. Eur. Ceram. Soc. 2010. V. 30. № 11. P. 2239. https://doi.org/10.1016/j.jeurceramsoc.2010.01.026
  3. 3. Baipai S., Dubey S., Venkateswaran T. et al. // Chem. Eng. J. 2024. V. 495. P. 153387. https://doi.org/10.1016/j.cej.2024.153387
  4. 4. Parthasarathy T.A., Perry M.D., Ciubiuk M.K. et al. // J. Am. Ceram. Soc. 2013. V. 96. № 3. P. 907. https://doi.org/10.1111/jace.12180
  5. 5. Zhao K., Ye F., Cheng L. et al. // J. Eur. Ceram. Soc. 2023. V. 43. № 16. P. 7241. https://doi.org/10.1016/j.jeurceramsoc.2023.07.046
  6. 6. Thimmappa S.K., Golla B.R., VV B.P. // Silicon. 2022. V. 14. № 18. P. 12049. https://doi.org/10.1007/s12633-022-01945-8
  7. 7. Nisar A., Hassan R., Agarwal A. et al. // Ceram. Int. 2022. V. 48. № 7. P. 8852. https://doi.org/10.1016/j.ceramint.2021.12.199
  8. 8. Meng J., Fang H., Wang H. et al. // Int. J. Appl. Ceram. Technol. 2023. V. 20. № 3. P. 1350. https://doi.org/10.1111/ijac.14336
  9. 9. Silvestroni L., Savino R., Cecere A. et al. // Compos. Part. A: Appl. Sci. Manuf. 2024. V. 185. P. 108293. https://doi.org/10.1016/j.compositesa.2024.108293
  10. 10. Ni D., Cheng Y., Zhang J. et al. // J. Adv. Ceram. 2022. V. 11. № 1. P. 1. https://doi.org/10.1007/s40145-021-0550-6
  11. 11. Mungiguerra S., Cecere A., Savino R. et al. // Corros. Sci. 2021. V. 178. P. 109067. https://doi.org/10.1016/j.corsci.2020.109067
  12. 12. Sonber J.K., Murthy T.S.R.C., Majundar S. et al. // Mater. Perform. Charact. 2021. V. 10. № 2. P. 20200133. https://doi.org/10.1520/MPC20200133
  13. 13. Cordeiro J.C., Zuzelski M., Hart J. et al. // Sol. Energy. 2025. V. 286. P. 113148. https://doi.org/10.1016/j.solener.2024.113148
  14. 14. Barbarossa S., Orrià R., Cao G. et al. // J. Alloys Compd. 2023. V. 935. P. 167965. https://doi.org/10.1016/j.jallcom.2022.167965
  15. 15. Kumar P.R., Hasan M.A., Dey A. et al. // J. Phys. Chem. C. 2021. V. 125. № 24. P. 13581. https://doi.org/10.1021/acs.jpcc.1c01984
  16. 16. Paksoy A., Yidurim I.D., Arabi S. et al. // J. Alloys Compd. 2024. V. 983. P. 173749. https://doi.org/10.1016/j.jallcom.2024.173749
  17. 17. Mahmood D.S.A., Khan A.A., Munot M.A. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2016. V. 146. P. 012002. https://doi.org/10.1088/1757-899X/146/1/012002
  18. 18. Lonné Q., Glandut N., Lefort P. // J. Eur. Ceram. Soc. 2012. V. 32. № 4. P. 955. https://doi.org/10.1016/j.jeurceramsoc.2011.10.027
  19. 19. Morris B.A., Povolny S.J., Seidel G.D. et al. // Open Ceram. 2023. V. 15. P. 100382. https://doi.org/10.1016/j.oceram.2023.100382
  20. 20. Wang S., Chen H., Li Y. et al. // J. Eur. Ceram. Soc. 2023. V. 43. № 9. P. 3905. https://doi.org/10.1016/j.jeurceramsoc.2023.02.070
  21. 21. Kim S.Y., Sesso M.L., Franks G. V. // J. Eur. Ceram. Soc. 2023. V. 43. № 5. P. 1762. https://doi.org/10.1016/j.jeurceramsoc.2022.12.027
  22. 22. Povolny S.J., Seidel G.D., Tallon C. // Ceram. Int. 2022. V. 48. № 8. P. 11502. https://doi.org/10.1016/j.ceramint.2022.01.006
  23. 23. Simonenko E.P., Simonenko N.P., Sevastyanov V.G. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 14. P. 1772. https://doi.org/10.1134/S00360236184005X
  24. 24. Gardini D., Backman L., Kaczmarek P. et al. // Compos. Part. B: Eng. 2024. V. 277. P. 111373. https://doi.org/10.1016/j.compositesb.2024.111373
  25. 25. Mungiguerra S., Silvestroni L., Savino R. et al. // Corros. Sci. 2022. V. 195. P. 109955. https://doi.org/10.1016/j.corsci.2021.109955
  26. 26. He L., Wu J., Meng Q. et al. // Mater. Today Commun. 2025. V. 42. P. 111391. https://doi.org/10.1016/j.mtcomm.2024.111391
  27. 27. Zoli L., Servadei F., Failla S. et al. // J. Adv. Ceram. 2024. V. 13. № 2. P. 207. https://doi.org/10.26599/JAC.2024.9220842
  28. 28. Chen Y. // Ceram. — Silikaty. 2023. V. 67. № 3. P. 260. https://doi.org/10.13168/cs.2023.0026
  29. 29. Tripathi S., Bhadauria A., Tiwari A. et al. // Diam. Relat. Mater. 2023. V. 140. P. 110537. https://doi.org/10.1016/j.diamond.2023.110537
  30. 30. Dubey S., S A., Nisar A. et al. // Scr. Mater. 2022. V. 218. P. 114776. https://doi.org/10.1016/j.scriptamat.2022.114776
  31. 31. Mehdipour M., Balak Z., Azizieh M. et al. // JOM. 2025. V. 77. № 4. P. 2001. https://doi.org/10.1007/s11837-024-07013-3
  32. 32. Simonenko E.P., Kolesnikov A.F., Chaplygin A.V. et al. // Int. J. Mol. Sci. 2023. V. 24. № 17. P. 13634. https://doi.org/10.3390/ijms241713634
  33. 33. Feltrin A.C., De Bona E., Karacasulu L. et al. // J. Eur. Ceram. Soc. 2025. V. 45. № 5. P. 117132. https://doi.org/10.1016/j.jeurceramsoc.2024.117132
  34. 34. Hoque M.S. Bin, Milich M., Akhanda M.S. et al. // J. Eur. Ceram. Soc. 2023. V. 43. № 11. P. 4581. https://doi.org/10.1016/j.jeurceramsoc.2023.03.065
  35. 35. Cheng Y., Zhou L., Liu J. et al. // J. Am. Ceram. Soc. 2023. V. 106. № 8. P. 4997. https://doi.org/10.1111/jace.19128
  36. 36. Qin M., Gild J., Hu C. et al. // J. Eur. Ceram. Soc. 2020. V. 40. № 15. P. 5037. https://doi.org/10.1016/j.jeurceramsoc.2020.05.040
  37. 37. Gild J., Zhang Y., Harrington T. et al. // Sci. Rep. 2016. V. 6. № 1. P. 37946. https://doi.org/10.1038/srep37946
  38. 38. Geraksiev N.S. // J. Phys. Conf. Ser. 2019. V. 1390. № 1. P. 012121. https://doi.org/10.1088/1742-6596/1390/1/012121
  39. 39. Kekelidze V.D., Matveev V.A., Meshkov I.N. et al. // Phys. Part. Nucl. 2017. V. 48. № 5. P. 727. https://doi.org/10.1134/S1063779617050239
  40. 40. Sissakian A.N., Kekelidze V.D., Sorin A.S. // Nucl. Phys. A. 2009. V. 827. № 1–4. P. 630c. https://doi.org/10.1016/j.nuclphysa.2009.05.138
  41. 41. Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2050. https://doi.org/10.1134/S0036023622618606
  42. 42. Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 9. P. 1405. https://doi.org/10.1134/S00360236226190014X
  43. 43. Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // J. Eur. Ceram. Soc. 2022. V. 42. № 1. P. 30. https://doi.org/10.1016/j.jeurceramsoc.2021.09.020
  44. 44. Simonenko E.P., Simonenko N.P., Gordeev A.N. et al. // J. Eur. Ceram. Soc. 2020. V. 40. № 4. P. 1093. https://doi.org/10.1016/j.jeurceramsoc.2019.11.023
  45. 45. Simonenko E.P., Simonenko N.P., Gordeev A.N. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 10. P. 1345. https://doi.org/10.1134/S0036023618100170
  46. 46. Simonenko E.P., Papynov E.K., Shichalin O.O. et al. // Ceramics. 2024. V. 7. № 4. P. 1566. https://doi.org/10.3390/ceramics7040101
  47. 47. Simonenko E.P., Simonenko N.P., Chaplygin A.V. et al. // Int. J. Refract. Met. Hard Mater. 2025. V. 130. P. 107139. https://doi.org/10.1016/j.ijrmhm.2025.107139
  48. 48. Simonenko E.P., Kolesnikov A.F., Chaplygin A.V. et al. // Russ. J. Inorg. Chem. 2024. V. 69. № 4. P. 517. https://doi.org/10.1134/S0036023624600825
  49. 49. Chaplygin A.V., Simonenko E.P., Kotov M.A. et al. // Plasma. 2024. V. 7. № 2. P. 300. https://doi.org/10.3390/plasma7020017
  50. 50. Chaplygin A., Simonenko E., Simonenko N. et al. // Int. J. Therm. Sci. 2024. V. 201. P. 109005. https://doi.org/10.1016/j.ijthermalsci.2024.109005
  51. 51. Kolesnikov A.F., Kuznetsov N.T., Murav'eva T.I. et al. // Fluid Dyn. 2022. V. 57. № 4. P. 513. https://doi.org/10.1134/S0015462822040061
  52. 52. Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // Materials (Basel). 2022. V. 15. № 23. P. 8507. https://doi.org/10.3390/ma15238507
  53. 53. Simonenko E.P., Chaplygin A.V., Simonenko N.P. et al. // Ceramics. 2025. V. 8. № 2. P. 67. https://doi.org/10.3390/ceramics8020067
  54. 54. Gilman J.J. // J. Appl. Phys. 1970. V. 41. № 4. P. 1664. https://doi.org/10.1063/1.1659089
  55. 55. Wong-Ng W., Hubbard C.R. // Powder Diffr. 1987. V. 2. № 04. P. 242. https://doi.org/10.1017/S0885715600012884
  56. 56. Kawamura T. // Mineral. J. 1965. V. 4. № 5. P. 333. https://doi.org/10.2465/minerj1953.4.333
  57. 57. Chaplygin A.V., Vasil'evskii S.A., Galkin S.S. et al. // Phys. Kinet. Gas Dyn. 2022. V. 23. № 2. P. 38. https://doi.org/10.33257/PhChGD.23.2.990
  58. 58. Gordeev A. // VKI, RTO AVT/VKI Spec. Course Meas. Tech. High Enthalpy Plasma Flows 1999. https://apps.dtic.mil/sti/citations/ADP010736
  59. 59. Bechelany M., Brioude A., Cornu D. et al. // Adv. Funct. Mater. 2007. V. 17. № 6. P. 939. https://doi.org/10.1002/adfm.200600816
  60. 60. Quintard P.E., Barberis P., Mirgorodsky A.P. et al. // J. Am. Ceram. Soc. 2002. V. 85. № 7. P. 1745. https://doi.org/10.1111/j.1151-2916.2002.tb00346.x
  61. 61. Wu R., Zhou B., Li Q. et al. // J. Phys. D. Appl. Phys. 2012. V. 45. № 12. P. 125304. https://doi.org/10.1088/0022-3727/45/12/125304
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library