- PII
- S3034560X25100183-1
- DOI
- 10.7868/S3034560X25100183
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 10
- Pages
- 1406-1416
- Abstract
- This study presents a simple and efficient method for synthesizing nanocrystalline zinc oxide using glycerate precursors. Zinc glycerates were obtained through thermal treatment of a solution of zinc acetylacetonate monohydrate in glycerol, followed by additional thermal processing, which resulted in the formation of nanocrystalline ZnO. The synthesized ZnO nanoparticles were characterized using XRD, SEM, and DTA/DSC techniques. The gas-sensing properties of ZnO toward a wide range of analyte gases were investigated. It was demonstrated that nanocrystalline ZnO exhibits high sensitivity and selectivity to NO. The proposed approach opens new prospects for the development of cost-effective and efficient gas sensors based on semiconductor oxides.
- Keywords
- хеморезистивный сенсор оксид цинка глицерат цинка химическая газовая сенсорика
- Date of publication
- 01.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 45
References
- 1. Özgür Ü., Alivov Y.I., Liu C. et al. // J. Appl. Phys. 2005. V. 98. № 4. P. 041301. https://doi.org/10.1063/1.1992666
- 2. Look D.C.// Mater. Sci. Eng. B. 2001. V. 80. № 1–3. P. 383. https://doi.org/10.1016/S0921-5107 (00)00604-8
- 3. Thomas D.G., Lander J.J. // J. Phys. Chem. Solids. 1957. V. 2. № 4. P. 318. https://doi.org/10.1016/0022-3697 (57)90077-X
- 4. Reynolds D.C., Look D.C., Jogai B. et al. // Phys. Rev. B. 1999. V. 60. № 4. P. 2340. https://doi.org/10.1103/PhysRevB.60.2340
- 5. Chen Y., Bagnall D.M., Koh H. et al. // J. Appl. Phys. 1998. V. 84. № 7. P. 3912. https://doi.org/10.1063/1.368595
- 6. Mang, K. Reimann, S. Ribenacke // Solid State Commun. 1995. V. 94. № 4. P. 251. https://doi.org/10.1016/0038-1098 (95)00054-2
- 7. Janotti, C.G. Van de Walle // Rep. Prog. Phys. 2009. V. 72. № 12. P. 126501. https://doi.org/10.1088/0034-4885/72/12/126501
- 8. Wang Z.L. // J. Phys. Condens. Matter. 2004. V. 16. № 25. P. R829. https://doi.org/10.1088/0953-8984/16/25/R01
- 9. Huang M.H., Mao S., Feick H. et al. // Science. 2001. V. 292. № 5523. P. 1897. https://doi.org/10.1126/science.1060367
- 10. Arnold M.S., Avouris P., Pan Z.W., Wang Z.L. // J. Phys. Chem. B. 2003. V. 107. № 3. P. 659. https://doi.org/10.1021/jp0271054
- 11. Collins P.G., Arnold M.S., Avouris P. // Science. 2001. V. 292. № 5517. P. 706. https://doi.org/10.1126/science.1058782
- 12. Schwab K., Henriksen E.A., Worlock J.M., Roukes M.L. // Nature. 2000. V. 404. № 6781. P. 974. https://doi.org/10.1038/35010065
- 13. Comini E., Faglia G., Shevegliert G., Pan Z., Wang Z.L. // Appl. Phys. Lett. 2002. V. 81. № 10. P. 1869. https://doi.org/10.1063/1.1504867
- 14. Zhao M.-H., Wang Z.-L., Mao S.X. // Nano Lett. 2004. V. 4. № 4. P. 587. https://doi.org/10.1021/nl035198a
- 15. Wibowo M.A., Marsudi M.I., Amal M.I. et al. // RSC Adv. 2020. V. 10. № 69. P. 42838. https://doi.org/10.1039/D0RA07689A
- 16. Keis K., Lindgren J., Lindquist S.-E., Hagfeldt A. // Langmuir. 2000. V. 16. № 10. P. 4688. https://doi.org/10.1021/la9912702
- 17. Wang C., Yin L., Zhang L. et al. // Sensors. 2010. V. 10. № 3. P. 2088. https://doi.org/10.3390/s100302088
- 18. Korotzenkov G. // Mater. Sci. Eng. R Rep. 2008. V. 61. № 1–6. P. 1. https://doi.org/10.1016/j.mscr.2008.02.001
- 19. Lee J.-H. // Sens. Actuators, B. 2009. V. 140. № 1. P. 319. https://doi.org/10.1016/j.snb.2009.04.026
- 20. Aygin S., Cann D. // Sens. Actuators, B. 2005. V. 106. № 2. P. 837. https://doi.org/10.1016/j.snb.2004.10.004
- 21. Jing Z., Zhan J. // Adv. Mater. 2008. V. 20. № 23. P. 4547. https://doi.org/10.1002/adma.200800243
- 22. Rothschild Y. Komem // J. Appl. Phys. 2004. V. 95. № 11. P. 6374. https://doi.org/10.1063/1.1728314
- 23. Yu J.H., Choi G.M. // Sens. Actuators, B. 1998. V. 52. № 3. P. 251. https://doi.org/10.1016/S0925-4005 (98)00275-5
- 24. Choi M.S., Kim M.Y., Mirzaei A. et al. // Appl. Surf. Sci. 2021. V. 568. P. 150910. https://doi.org/10.1016/j.apsusc.2021.150910
- 25. Leileveld J., Klingmüller K., Pozzer A. et al. // Proc. Natl. Acad. Sci. U.S.A. 2019. V. 116. № 15. P. 7192. https://doi.org/10.1073/pnas.1819989116
- 26. Brunekreef B., Holgate S.T. // Lancet. 2002. V. 360. № 9341. P. 1233. https://doi.org/10.1016/S0140-6736 (02)11274-8
- 27. HorennansF., Menus J., Bonggers E. et al. // Sens. Actuators, B. 2010. V. 148. № 2. P. 392. https://doi.org/10.1016/j.snb.2010.05.003
- 28. Xuan J., Zhao G., Sun M. et al. // RSC Adv. 2020. V. 10. № 65. P. 39786. https://doi.org/10.1039/D0RA073281
- 29. Zhu L., Zeng W., Li Y. // Mater. Lett. 2018. V. 228. P. 331. https://doi.org/10.1016/j.matlet.2018.06.049
- 30. Ong C.B., Ng L.Y., Mohammad A.W. // Renew. Sustain. Energy Rev. 2018. V. 81. P. 536. https://doi.org/10.1016/j.rser.2017.08.020
- 31. Sakai G., Matsunaga N., Shimanoe K., Yamazoe N. // Sens. Actuators, B. 2001. V. 80. № 2. P. 125. https://doi.org/10.1016/S0925-4005 (01)00890-5
- 32. Xia H., Xu Q., Zhang J. // Nano-Micro Lett. 2018. V. 10. № 4. P. 66. https://doi.org/10.1007/s40820-018-0219-z
- 33. Liu J., Gao F., Wu L. et al. // Appl. Phys. A. 2020. V. 126. № 6. P. 454. https://doi.org/10.1007/s00339-020-03643-x
- 34. Mrabet, N. Mahdhi, A. Boukhachen, M. Amlouk, T. Manoubi // J. Alloys Compd. 2016. V. 688. P. 122. https://doi.org/10.1016/j.jallcom.2016.06.286
- 35. Livage J., Henry M., Sanchez C. // Prog. Solid State Chem. 1988. V. 18. № 4. P. 259. https://doi.org/10.1016/0079-6786 (88)90005-2
- 36. Segovia M., Sotomayor C., Gonzalez G., Benavente E. // Mol. Cryst. Liq. Cryst. 2012. V. 555. № 1. P. 40. https://doi.org/10.1080/15421406.2012.634363
- 37. Choy K. // Prog. Mater. Sci. 2003. V. 48. № 2. P. 57. https://doi.org/10.1016/S0079-6425 (01)00009-3
- 38. Zahra S., Bukhari H., Qaisar S., Sheikh A., Amin A. // BMC Chem. 2022. V. 16. № 1. P. 104. https://doi.org/10.1186/s13065-022-00900-3
- 39. Greiner, J.H. Wendoff // Angew. Chem. Int. Ed. 2007. V. 46. № 30. P. 5670. https://doi.org/10.1002/anie.200604646
- 40. M.I. Ikin, V.F. Gromov, G.N. Gerasimov et al. // Micromachines. 2023. V. 14. № 9. P. 1685. https://doi.org/10.3390/mi14091685
- 41. Droepen E.K., Wee B.S., Chin S.F., Kok K.Y. // Biointerface Res. Appl. Chem. 2021. V. 12. № 1. P. 4261. https://doi.org/10.33263/BRIAC123.42614292
- 42. Dien N.D. // Adv. Mater. Sci. 2019. V. 4. № 2. P. 1. https://doi.org/10.15761/AMS.1000147
- 43. Yukhin Y.M., Titkov A.I., Logutenko O.A., Mishchenko K.V., Lyakhov N.Z. // Russ. J. Gen. Chem. 2017. V. 87. № 12. P. 2870. https://doi.org/10.1134/S1070363217120180
- 44. Pazyrev I.S., Andreikov E.I., Zakharova G.S., Podval’naya N.V., Osipova V.A. // Russ. Chem. Bull. 2021. V. 70. № 4. P. 805. https://doi.org/10.1007/s11172-021-3153-z
- 45. Kim H.-B., Jeong D.-W., Jang D.-J. // CrystEngComm. 2016. V. 18. № 5. P. 898. https://doi.org/10.1039/C5CE02334C
- 46. Zahra S., Shahid W., Amin C.A., Zahra S., Kanwal B. // BMC Chem. 2022. V. 16. № 1. P. 105. https://doi.org/10.1186/s13065-022-00898-8
- 47. Zhang P., Liu L., Fan M., Dong Y., Jiang P. // RSC Adv. 2016. V. 6. № 80. P. 76223. https://doi.org/10.1039/C6RA14288E
- 48. Zhang S., Yang P., Zhang A., Shi R., Zhu Y. // CrystEngComm. 2013. V. 15. № 43. P. 9090. https://doi.org/10.1039/c3ce41218k
- 49. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 11. P. 1415. https://doi.org/10.1134/S0036023617110195
- 50. Nagornov I.A., Mokrushin A.S., Simonenko E.P. et al. // Ceram. Int. 2020. V. 46. № 6. P. 7756. https://doi.org/10.1016/j.ceramint.2019.11.279
- 51. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 11. P. 1519. https://doi.org/10.1134/S0036023618110189
- 52. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 11. P. 1415. https://doi.org/10.1134/S0036023617110195
- 53. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 11. P. 1519. https://doi.org/10.1134/S0036023618110189
- 54. Mokrushin A.S., Nagornov I.A., Simonenko T.L. et al. // Appl. Surf. Sci. 2022. V. 589. P. 152974. https://doi.org/10.1016/j.apsusc.2022.152974
- 55. Simonenko E.P., Mokrushin A.S., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2024. V. 69. № 5. P. 604. https://doi.org/10.1134/S0036023624600850
- 56. Mokrushin A.S., Nagornov I.A., Simonenko T.L. et al. // Mater. Sci. Eng. B. 2021. V. 271. P. 115233. https://doi.org/10.1016/j.mseb.2021.115233
- 57. Mokrushin A.S., Nagornov I.A., Gorban Y.M. et al. // Ceram. Int. 2023. V. 49. № 11. P. 17600. https://doi.org/10.1016/j.ceramint.2023.02.126
- 58. Ji H., Zeng W., Li Y. // Nanoscale. 2019. V. 11. № 47. P. 22664. https://doi.org/10.1039/C9NR07699A
- 59. Jeong S., Kim J., Lee J. // Adv. Mater. 2020. V. 32. № 51. P. 2002075. https://doi.org/10.1002/adma.202002075
- 60. Chen M., Wang Z., Han D., Gu F., Guo G. // J. Phys. Chem. C. 2011. V. 115. № 26. P. 12763. https://doi.org/10.1021/jp201816d
- 61. Marikutsa, M. Rumyantseva, E.A. Konstantinova, A. Gaskov // Sensors. 2021. V. 21. № 7. P. 2554. https://doi.org/10.3390/s21072554