RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

INFLUENCE OF AACVD TEMPERATURE ON THE MICROSTRUCTURAL AND GAS SENSING PROPERTIES OF ZnO THIN FILMS

PII
S3034560X25100172-1
DOI
10.7868/S3034560X25100172
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 10
Pages
1391-1405
Abstract
Thin films of zinc oxide were obtained by the AACVD method. The variable parameter was the synthesis temperature, which was from 350 to 500°C with a step of 25 degrees. The analysis revealed that ZnO particles have a wurtzite structure with an average crystallite size of 26 ± 4 nm. As a result of the analysis of the morphology of the obtained films, it was shown that in the temperature range from 400–450°C, continuous films with an average particle size of 52 ± 14 nm are formed, and at synthesis temperatures of 350–375°C; 475–500°C, films with a discontinuous island-like morphology with an average size of 51 ± 13 nm are formed. The optical properties of the obtained films were studied, and the estimated values of the band gap were 3.31–3.34 eV. A temperature-dependent mechanism of film formation was proposed. The chemosensory properties were studied at an operating temperature of 150–350°C using a wide range of analyte gases: CO, NH, H, CH, CH, ethanol, acetone and NO₂. The thin films showed high sensitivity (4–100 ppm) to volatile oxygen-containing organic compounds (acetone and ethanol) at an operating temperature of 350°C. The effect of humidity on the magnitude and shape of the signal obtained during acetone detection was studied.
Keywords
газовый сенсор ААСVD оксид цинка VOC's микроструктура
Date of publication
01.10.2025
Year of publication
2025
Number of purchasers
0
Views
46

References

  1. 1. Özgür Ü., Alivov Y.I., Liu C. et al. // J. Appl. Phys. 2005. V. 98. № 4. P. 1. https://doi.org/10.1063/1.1992666
  2. 2. Xu S., Wang Z.L. // Nano Res. 2011. V. 4. № 11. P. 1013 https://doi.org/10.1007/s12274-011-0160-7
  3. 3. Mukhanov VA., Sokolov P.S., Baranov A.N. et al. // Cryst. Eng. Comm. 2013. V. 15. № 32. P. 6318. https://doi.org/10.1039/c3ce40766g
  4. 4. Lin W., Ding K., Lin Z. et al. // Cryst. Eng. Comm. 2011. V. 13. № 10. P. 3338. https://doi.org/10.1039/c1ce05122a
  5. 5. Tishkevich D.I., Vorobjova A.I., Vinnik D.A. // Solid State Phenom. 2020. V. 299 SSP. P. 100. https://doi.org/10.4028/www.scientific.net/SSP.299.100
  6. 6. Ohta H., Hosono H. // Mater. Today. 2004. V. 7. № 6. P. 42. https://doi.org/10.1016/S1369-7021 (04)00288-3
  7. 7. O’Brien S., Nolan M.G., Copuroglu M. et al. // Thin Solid Films. 2010. V. 518. № 16. P. 4515. https://doi.org/10.1016/j.tsf.2009.12.020
  8. 8. Cheng X.L., Zhao H., Huo L.H. et al. // Sens. Actuators, B: Chem. 2004. V. 102. № 2. P. 248. https://doi.org/10.1016/j.spb.2004.04.080
  9. 9. Arshak K., Gaidan I. // Mater. Sci. Eng., B. 2005. V. 118. № 1–3. P. 44. https://doi.org/10.1016/j.mseb.2004.12.061
  10. 10. Neri G., Bonavita A., Rizzo G. et al. // Sens. Actuators, B: Chem. 2006. V. 114. № 2. P. 687. https://doi.org/10.1016/j.spb.2005.06.062
  11. 11. Мокрушин А.С., Дмитриева С.А., Нагорнова И.А. и др. // Журн. неорган. химии. 2024. Т. 69. № 12. С. 1872. https://doi.org/10.31857/S0044457X24120195
  12. 12. Look D.C., Reynolds D.C., Litton C.W. et al. // Appl. Phys. Lett. 2002. V. 81. № 10. P. 1830. https://doi.org/10.1063/1.1504875
  13. 13. Kolodziejczak-Radzinska A., Jesionowski T. // Materials (Basel). 2014. V. 7. № 4. P. 2833. https://doi.org/10.3390/mn7042833
  14. 14. Benelmekki M., Erbe A. Nanostructured thin films – background, preparation and relation to the technological revolution of the 21st century, 2019 https://doi.org/10.1016/B978-0-08-102572-7.00001-5
  15. 15. Edinger S., Bansal N., Bauch M. et al. // J. Mater. Sci. 2017. V. 52. № 14. P. 8591. https://doi.org/10.1007/s10853-017-1084-8
  16. 16. Bedia A., Bedia F.Z., Allierie M. et al. // Energy Procedia. 2015. V. 74. P. 529. https://doi.org/10.1016/j.egypro.2015.07.740
  17. 17. Bao D., Gu H., Kuang A. // Thin Solid Films. 1998. V. 312. № 1–2. P. 37. https://doi.org/10.1016/s0040-6090 (97)00302-7
  18. 18. Khan M.I., Bhatti K.A., Qindeeel R. et al. // Results Phys. 2017. V. 7. P. 651. https://doi.org/10.1016/j.rinp.2016.12.029
  19. 19. Ansari A.A., Khan M.A.M., Alhoshan M. et al. // J. Semiconduct. 2012. V. 33. № 4. https://doi.org/10.1088/1674-4926/33/4/042002
  20. 20. Lee C.H., Choi M.S. // Thin Solid Films. 2016. V. 605. P. 157. https://doi.org/10.1016/j.tsf.2015.09.050
  21. 21. Tan S.T., Chen B.J., Sun X.W. et al. // J. Appl. Phys. 2005. V. 98. № 1. https://doi.org/10.1063/1.1940137
  22. 22. Wix G., Viri I., Sagan P. et al. // Nanoscale Res. Lett. 2017. V. 12. № 1. P. 0. https://doi.org/10.1186/s11671-017-2033-9
  23. 23. Aggarwal R., Zhou H., Jin C. et al. // J. Appl. Phys. 2010. V. 107. № 11. P. 3. https://doi.org/10.1063/1.3406260
  24. 24. Socol G., Craciun D., Mihailescu I.N. et al. // Thin Solid Films. 2011. V. 520. № 4. P. 1274. https://doi.org/10.1016/j.tsf.2011.04.196
  25. 25. Liu Y., Lian J. // Appl. Surf. Sci. 2007. V. 253. № 7. P. 3727. https://doi.org/10.1016/j.apsusc.2006.08.012
  26. 26. Wu T.Y., Huang Y.S., Hu S.Y. et al. // Solid State Commun. 2016. V. 237–238. P. 1. https://doi.org/10.1016/j.ssc.2016.03.015
  27. 27. Ohgaki T., Kawamura Y., Kuroda T. et al. // Key Eng. Mater. 2003. V. 248. P. 91. https://doi.org/10.4028/www.scientific.net/kem.248.91
  28. 28. Bhaehu D.S., Sankar G., Parkin I.P. // Chem. Mater. 2012. V. 24. № 24. P. 4704. https://doi.org/10.1021/cm302913b
  29. 29. Jiamprasertkoon A., Powell M.J., Dixon S.C. et al. // J. Mater. Chem. A. 2018. V. 6. № 26. P. 12682. https://doi.org/10.1039/c8ta014206
  30. 30. Chen S., Noor N., Parkin I.P. et al. // J. Mater. Chem. A. 2014. V. 2. № 40. P. 17174. https://doi.org/10.1039/c4ta038887
  31. 31. Мокрушин А.С., Дмитриева С.А., Горбань Ю.М. и др. // Журн. неорган. химии. 2025. Т. 70. № 4. С. 624. https://doi.org/10.31857/S0044457X2504047
  32. 32. Claros M., Seika M., Jimenez Y.P. et al. // Nanomaterials. 2020. V. 10. № 3. P. 1. https://doi.org/10.3390/nano10030471
  33. 33. Powell M.J., Potter D.B., Wilson R.L. et al. // Mater. Des. 2017. V. 129. P. 116. https://doi.org/10.1016/j.matdes.2017.05.017
  34. 34. Vallejos S., Piztrová N., Čechal J. et al. // J. Vis. Exp. 2017. V. 2017. № 127. P. 1. https://doi.org/10.3791/56127
  35. 35. Ma T. // Mater. Sci. Semiconduct. Process. 2021. V. 121. P. 105413. https://doi.org/10.1016/j.mssp.2020.105413
  36. 36. Daraz U., Ansari T.M., Arain S.A. et al. // Main Group Met. Chem. 2022. V. 45. № 1. P. 178. https://doi.org/10.1515/mgnc-2022-0017
  37. 37. Shujah T., Butt A., Ikram M. et al. // Dig. J. Nanometer. Biostructures. 2016. V. 11. № 3. P. 891.
  38. 38. Noh M.F.M., Soh M.F., Teh C.H. et al. // Sol. Energy. 2017. V. 158. P. 474. https://doi.org/10.1016/j.solencr.2017.09.048
  39. 39. Sánchez-Martín S., Olatzola S.M., Castaño E. et al. // RSC Adv. 2021. V. 11. № 30. P. 18493. https://doi.org/10.1039/d1ra03251h
  40. 40. Selvaraj B., Balaguru Rayappan J.B., Jayanth Babu K. // Mater. Sci. Semicond. Process. 2020. V. 112. P. 105006. https://doi.org/10.1016/j.mssp.2020.105006
  41. 41. Du H., Yang W., Yi W. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 20. P. 23084. https://doi.org/10.1021/acsami.0603498
  42. 42. Hijri M., Bahanan F., Aida M.S. et al. // J. Inorg. Organomet. Polym. Mater. 2020. V. 30. № 10. P. 4063. https://doi.org/10.1007/s10904-020-01553-2
  43. 43. Мокрушин А.С., Горбань Ю.М., Нагорнова И.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1891. https://doi.org/10.31857/s0044457x22601250
  44. 44. Wang M., Zhu Y., Luo Q. et al. // Appl. Surf. Sci. 2021. V. 566. P. 150750. https://doi.org/10.1016/j.apsusc.2021.150750
  45. 45. Mokrushin A.S., Nagornov I.A., Gorban Y.M. et al. // J. Alloys Compd. 2024. V. 1009. P. 176856. https://doi.org/10.1016/j.jallcom.2024.176856
  46. 46. Mokrushin A.S., Nagornov I.A., Averin A.A. et al. // Chemosensors. 2023. V. 11. № 2. P. 142. https://doi.org/10.3390/chemosensors11020142
  47. 47. Vallejos S., Pizurova N., Grácia I. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 48. P. 33335. https://doi.org/10.1021/acsami.6612992
  48. 48. Khan A. // J. Pakistan Mater. Soc. 2010. V. 4. № 1. P. 5.
  49. 49. Krysova H., Mansfeldova V., Tarabkova H. et al. // J. Solid State Electrochem. 2024. V. 28. № 8. P. 2531. https://doi.org/10.1007/s10008-023-05766-6
  50. 50. Hou X., Choy K.L. // Chem. Vap. Deposition. 2006. V. 12. № 10. P. 583. https://doi.org/10.1002/cvde.200600033
  51. 51. Choy K.L. // Prog. Mater. Sci. 2003. V. 48. № 2. P. 57. https://doi.org/10.1016/S0079-6425 (01)00009-3
  52. 52. Mokrushin A.S., Simonenko T.L., Simonenko N.P. et al. // J. Alloys Compd. 2021. V. 868. https://doi.org/10.1016/j.jallcom.2021.159090
  53. 53. Wongrat E., Chanlek N., Chucalarrom C. et al. // Ceram. Int. 2017. V. 43. № May. P. S557. https://doi.org/10.1016/j.ceramint.2017.05.296
  54. 54. Heiland G., Kohl D. // Physical and Chemical Aspects of Oxidic Semiconductor Gas Sensors, Kodansha Ltd, 1988. https://doi.org/10.1016/b978-0-444-98901-7.50007-5
  55. 55. Hsu C.L., Chang L.F., Hsueh T.J. // Sens. Actuators, B: Chem. 2017. V. 249. P. 265. https://doi.org/10.1016/j.snb.2017.04.083
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library