RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

LIQUID-PHASE HYDROGENATION OF STYRENE ON SUPPORTED NICKEL CATALYSTS NI/SIO IN AN AQUEOUS MEDIUM

PII
S3034560X25100146-1
DOI
10.7868/S3034560X25100146
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 10
Pages
1360-1365
Abstract
Liquid-phase hydrogenation of styrene at atmospheric pressure in an aqueous medium was studied on a series of supported nickel catalysts Ni/SiO with different nickel content (from 6 to 28 wt. %). The effect of textural characteristics of the catalysts and controlled deactivation with sulfide ions on the catalytic activity was studied. It was shown that with decreasing nickel content, dispersion increases, but the area of the active surface of the reduced metal decreases. Partial deactivation was simulated by introducing a controlled amount of NaS, which made it possible to quantitatively estimate the density and activity of different types of catalytic centers. It was found that for complete deactivation of one Ni atom on the surface, an average of 0.6 to 1.2 S anions are required, depending on the morphology of the catalyst. An analysis of the catalyst stability to the catalytic poison was performed based on the TOF and TON parameters. The obtained results expand the understanding of deactivation mechanisms and can be used in the development of new generation catalysts resistant to the action of sulfur-containing impurities in hydrogenation reactions.
Keywords
активная поверхность TOF дезактивация катализатора модификация поверхности катализатора
Date of publication
01.10.2025
Year of publication
2025
Number of purchasers
0
Views
63

References

  1. 1. Joseph W. // Phys. Sci. Rev. 2016. V. 1. № 1. P. 20150019. https://doi.org/10.1515/psr-2015-0019
  2. 2. Chen B., Dingerdissen U., Krauter J.G.E. et al. // Appl. Cat. A: Gen. 2005. V. 280. № 1. P. 17. https://doi.org/10.1016/j.apcata.2004.08.025
  3. 3. Zaera F. // ACS Cat. 2017. V. 7. № 8. P. 4947. https://doi.org/10.1021/acscatal.7b01368
  4. 4. Лефеева О.В., Невицева М.П. // Изв. вузов. Сер. Химия и хим. технология. 2025. Т. 68. № 5. С. 101. https://doi.org/10.6060 /ivkkt.20256805.7116
  5. 5. Latypova A.R., Lefedova O.V., Filippov D.V., Doluda V.Yu. // Chem. Tech. 2020. V. 63. № 1. P. 86. https://doi.org/10.3390/catal10040375
  6. 6. Ciriminna R., Fidalgo A., Pandarus V. et al. // Chem. Rev. 2013. V. 113. № 8. P. 6592. https://doi.org/10.1021/cr300399c
  7. 7. Pagliaro M. Silica-based materials for advanced chemical applications. London: Royal Society of Chemistry, 2009. 186 p. https://doi.org/10.1039/9781847557162
  8. 8. Peyrov M.H., Rostamikia T., Parsafard N. // Energy&Fuels. 2018. V. 32. № 11. P. 11432. https://doi.org/10.1021/acs.energyfuels.8b02952
  9. 9. Le T.A., Kang J.K., Park E.D. // Appl. Catal., A: Gen. 2019. V. 581. P. 67. https://doi.org/10.1016/j.apcata.2019.05.020
  10. 10. Mohammed M.A., Kaura A. M., Rabo A. S. Energy Transition in the Oil and Gas Industry / Boca Raton: CRC Press, 2025. 622 p.
  11. 11. Hayes G., Laurel M., MacKinnon et al. // Chem. Rev. 2023. V. 123. № 5. P. 2609. https://doi.org/10.1021/acs.chemrev.2c00354
  12. 12. Afinevskii A.V., Prozorov D.A., Knyazev A.V., Osadchaya T.Y. // Chemistry Select. 2020. V. 5. № 3. P. 1007. https://doi.org/10.1002/slct.201903608
  13. 13. Bartholomew C.H. //Appl. Catal., A: Gen. 2001. V. 212. № 1. P. 17. https://doi.org/10.1016/S0926-860X (00)00843-7
  14. 14. Прозоров Д.А., Лукин М.В. // Вестн. Тв. гос. ун-та. Сер. Химия. 2013. № 15. С. 168.
  15. 15. Андерсон Д.Р. Структура металлических катализаторов / Мир, Москва, 1978. 485 с.
  16. 16. Zhao A. // Cat. Com. 2012. V. 17. P. 34. https://doi.org/10.1016/j.catcom.2011.10.010
  17. 17. Прозоров Д.А., Афинеевский А.В., Князев А.В. и др. Каталитические свойства и дезактивация склепного никеля в реакциях жидкофазной гидротеизации / Казань, 2018. 316 с. ISBN 978-5-00118-185-9.
  18. 18. Романенко Ю.Е., Афинеевский А.В., Прозоров Д.А. и др. // Кинетика и каталия. 2024. Т. 65. № S3. С. 327. https://doi.org/10.31857/S0453881124030053
  19. 19. Худорожков А.К. Изучение влияния состояния поверхности палладийсодержащих катализаторов на их активность и стабильность в реакции полного окисления метана: Дис. ... канд. хим. наук. Новосибирск, 2017. 121 с.
  20. 20. Bergeret G., Gallegot P. Particle size and dispersion measurements. Handbook of heterogeneous catalysis. Part 3 / New Jersey: Wiley, 2008. V. 2. 738 p. https://doi.org/10.1002/9783527610044.hetcat0038
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library