- PII
- S3034560X25100127-1
- DOI
- 10.7868/S3034560X25100127
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 10
- Pages
- 1343-1351
- Abstract
- New collagen-chitosan materials modified by (containing) Ag nanoparticles promising for creating wound coatings are based on a porous hybrid material obtained from collagen and chitosan in powder and gel forms. The paper presents an original process concept of the hybrid biomaterials formation. Powders of collagen and chitosan polymers previously modified with Ag nanoparticles obtained by metal-vapor synthesis were used for synthesis of the materials. Metal containing powder systems with Ag particles were used as precursors for gels preparation after lyophilization of which porous hybrid materials were obtained. Nanocomposites were studied using XPS, PXRD and SEM/EDX methods. A homogeneous distribution of Ag nanoparticles over the collagen-chitosan composite volume was recorded and the composition and electronic states of the metal in the material were studied.
- Keywords
- коллаген хитозан наночастицы серебра гибридные материалы XPS
- Date of publication
- 01.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 94
References
- 1. Nogueira L.F.B., Cruz M.A.E., Aguilar G.J. et al. // Int. J. Mol. Sci. 2022. V. 23. № 13. P. 7277. https://doi.org/10.3390/ijms23137277
- 2. Martins E., Diogo G.S., Pires R. et al. // Mar. Drugs. 2022. V. 20. № 11. P. 718. https://doi.org/10.3390/md20110718
- 3. Li R., Xu Z., Jiang Q. et al. // Regen. Biomater. 2020. V. 7. № 4. P. 371. https://doi.org/10.1093/rb/rbaa008
- 4. Gentile P., Mattioli-Belmonte M., Chiono V. et al. // J. Biomed. Mater. Res., Part A. 2012. V. 100. P. 2654. https://doi.org/10.1002/jbm.a.34205
- 5. Mathews S., Bhonde R., Gupta P.K. et al. // Biochem. Biophys. Res. Commun. 2011. V. 414. P. 270. https://doi.org/10.1016/j.bbrc.2011.09.071
- 6. Бакута А.О., Румш Л.Д., Наумкин А.В. и др. // Изв. РАН. Сер. хим. 2015. № 7. С. 1663.
- 7. Barroso T., Viveiros R., Casimiro T. et al. // J. Supercrit. Fluids. 2014. V. 94. P. 102. https://doi.org/10.1016/j.supflu.2014.07.005
- 8. Stonkowska A., Kaczmarek B., Gadzala-Kopeiuch R. et al. // J. Drug. Deliv. Sci. Technol. 2016. V. 35. P. 353. https://doi.org/10.1016/j.jddst.2016.09.001
- 9. Kaczmarek B., Stonkowska A. // Adv. Polym. Technol. 2018. V. 37. P. 2367. https://doi.org/10.1002/adv.21912
- 10. Pallaske F., Pallaske A., Herklotz K. et al. // J. Wound Care. 2018. V. 27. P. 692. https://doi.org/10.12968/jowc.2018.27.10.692
- 11. Privar Y., Skatova A., Maiorova M. et al. // Gels. 2024. V. 10. P. 483. https://doi.org/10.3390/gels10070483
- 12. Koirala P., Bhattarai P., Srippabom J. et al. // Int. J. Biol. Macromol. 2025. V. 285. P. 138324. https://doi.org/10.1016/j.ijbiomac.2024.138324
- 13. Mohandas A., Deepthi S., Biswas R. et al. // Bioact. Mater. 2018. V. 3. P. 267. https://doi.org/10.1016/j.bioactmat.2017.11.003
- 14. Остроумов А.А., Пермякова А.Е., Жуланова Т.Ю. и др. // Журн. неорган. химии. 2025. Т. 70. С. 14. https://doi.org/10.31857/S0044457X25010023
- 15. Das S., Das M.P., Das J. // JPR. 2013. V. 6. № 1. P. 11. https://doi.org/10.1016/j.jopr.2012.11.006
- 16. Andonigi M., Heras K.L., Santos-Vizcaino E. et al. // Carbohydr. Polym. 2020. V. 237. P. 116159. https://doi.org/10.1016/j.carbpol.2020.116159
- 17. Abdel-Mohsen A.M., Abdel-Rahman R.M., Kubena I. et al. // Carbohydr. Polym. 2020. V. 230. P. 115708. https://doi.org/10.1016/j.carbpol.2019.115708
- 18. Franci G., Falanga A., Galdiero S. et al. // Molecules. 2015. V. 20. № 5. P. 8856. https://doi.org/10.3390/molecules20058856
- 19. Su H., Chen Y., Jing X. et al. // Adv. Healthc. Mater. 2024. V. 13. № 5. P. 2302868. https://doi.org/10.1002/adhm.202302868
- 20. Wu J., Zheng Y., Wen X. et al. // Biomed. Mater. 2014. V. 9. № 3. P. 035005. https://doi.org/10.1088/1748-6041/9/3/035005
- 21. Gupta A., Briffa S.M., Swinglee S. et al. // Biomacromolecules. 2020. V. 21. № 5. P. 1802. https://doi.org/10.1021/acs.biomac.9b01724
- 22. Vasil'kov A., Tseomashko N., Tretyakova A. et al. // Coatings. 2023. V. 13. № 8. P. 1315. https://doi.org/10.3390/coatings13081315
- 23. Rubina M., Shulepina A., Svetogorov R. et al. // Macromol. Symp. 2020. V. 389. № 1. P. 1900067. https://doi.org/10.1002/masy.201900067
- 24. Cui L., Gao S., Song X. et al. // RSC Adv. 2018. V. 8. P. 28433. https://doi.org/10.1039/C8RA05526B
- 25. Tretyakova A.N., Voloshina P.R., Naumkin A.V. et al. // Mendeleev Commun. 2025. V. 35. № 4. P. 481. https://doi.org/10.71267/mencom.7706
- 26. Vasil'kov A.Y., Dovnar R.I., Smotryn S.M. et al. // Antibiotics. 2018. V. 7. № 3. P. 80. https://doi.org/10.3390/antibiotics7030080
- 27. Briggs D. Practical Surface Analysis / Wiley: Chichester, New York, Aarau, 1990. 694 p. ISBN 978-0-471-92081-6
- 28. Beccat P., da Silva P., Huibam Y. et al. // OGST — Revue d'IFP Energies nouvelles. 1999. V. 54. № 4. P. 487. https://doi.org/10.2516/ogst:1999042
- 29. Beamson G., Briggs D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. Wiley, 1992. 306 p. ISBN — 0471935921
- 30. Ratner B.D., Hoffman A.S., Schoen F.J. et al. Biomaterials Science: An Introduction to Materials in Medicine. Amsterdam, Boston: Elsevier Academic Press, 2004. 484 p. ISBN 978-0-12-374626-9