- PII
- S3034560X25100111-1
- DOI
- 10.7868/S3034560X25100111
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 10
- Pages
- 1333-1342
- Abstract
- A combined quantum chemical and molecular dynamics study of atomic layer etching of amorphous zinc oxide by β-diketones: acetylacetone, 1,1,1-trifluoroacetylacetone, and 1,1,1,5,5,5-hexafluoroacetylacetone was carried out using the ORCA 6.0.1 and LAMMPS software packages. Within the framework of density functional theory at the PBE-D3BJ/def2-SVP level, the energetic parameters of adsorption and desorption were investigated, and the induced surface stress was quantitatively evaluated. It was found that acetylacetone induces the highest surface stress (1.62 eV) and enables spontaneous etching due to its low desorption energy (2.10 eV). The fluorinated derivatives exhibit a self-limiting interaction behavior: 1,1,1-trifluoroacetylacetone, with a desorption energy of 3.27 eV, induces a surface stress of 1.05 eV, while 1,1,1,5,5,5-hexafluoroacetylacetone causes the weakest effect on the surface structure (1.01 eV) with a desorption energy of 2.53 eV. The obtained results suggest that 1,1,1-trifluoroacetylacetone can be considered the most suitable precursor for controlled atomic layer etching of zinc oxide.
- Keywords
- атомно-слоевое травление оксид цинка ацетилацетон 1,1,1-трифторацетилацетон 1,1,1,5,5,5-гексафторацетилацетон
- Date of publication
- 01.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 60
References
- 1. George S.M. // Acc. Chem. Res. 2020. V. 53. № 6. P. 1151. https://doi.org/10.1021/acs.accounts.0c00084
- 2. George S.M., Lee Y. // ACS Nano. 2016. V. 10. № 5. P. 4889. https://doi.org/10.1021/acsnano.6b02991
- 3. Faraz T., Roozeboom F., Knoops H.C.M. et al. // ECS J. Solid State Sci. Technol. 2015. V. 4. № 6. P. 5023. https://doi.org/10.1149/2.0051506jss
- 4. Foroughi-Abari A., Cadien K. // Nanofabrication: Techniques and Principles. 2012. P. 143. https://doi.org/10.1007/978-3-7091-0424-8_6
- 5. Kanarik K.J., Lill T., Hudson E.A. et al. // J. Vac. Sci. Technol., A: Vacuum, Surfaces, Films. 2015. V. 33. № 2. P. 020802. https://doi.org/10.1116/1.4913379
- 6. Knoops H.C.M., Langeris E., van de Sanden M.C.M. et al. // J. Electrochem Soc. 2010. V. 157. № 12. P. 241. https://doi.org/10.1149/1.3491381
- 7. Arts K., Uriainen M., Puurunen R.L. et al. // J. Phys. Chem. C. 2020. V. 124. № 1. P. 27030. https://doi.org/10.1021/acs.jpcc.9b11082
- 8. Lu W., Lee Y., Gerisch J.C. et al. // Nano. Lett. 2019. V. 19. № 8. P. 5159. https://doi.org/10.1021/acs.nanolett.9b01525
- 9. Lee Y., Huffman C., George S.M. // Chem. Mater. 2016. V. 28. № 21. P. 7657. https://doi.org/10.1021/acs.chemmater.6b02543
- 10. Song S.K., Kim J.S., Margayio H.R.M. et al. // ACS Nano. 2021. V. 15. № 7. P. 12276. https://doi.org/10.1021/acsnano.lc04086
- 11. Edel R., Alexander E., Nam T. et al. // J. Vac. Sci. Technol., A. 2024. V. 42. № 6. https://doi.org/10.1116/6.0003899
- 12. Fang C., Cao Y., Wu D. et al. // Prog. Natural Sci: Matter. Int. 2018. V. 28. № 6. P. 667. https://doi.org/10.1016/j.pnsc.2018.11.003
- 13. Sharma D.K., Shukla S., Sharma K.K. et al. // Mater. Today: Proc. 2022. V. 49. № 8. P. 3028. https://doi.org/10.1016/j.matpr.2020.10.238
- 14. Peverini L., Ziegler E., Bigault T. et al. // Phys. Rev. B: Condens. Matter Mater Phys. 2005. V. 72. № 4. P. 045445. https://doi.org/10.1103/PhysRevB.72.045445
- 15. Romero R., Leinen D., Dalchiele E.A. et al. // Thin Solid Films. 2006. V. 515. № 4. P. 1942. https://doi.org/10.1016/j.tsf.2006.07.152
- 16. Таспуооа M.A., Таспуооа A.A., Бестровов С.К. и др. // Журн. неорган. химии. 2024. Т. 69. № 3. С. 385. https://doi.org/10.31857/S0044457X24030128
- 17. Cano A.M., Kondati Natarajan S. et al. // J. Vac. Sci. Technol., A. 2022. V. 40. № 2. P. 022601. https://doi.org/10.1116/6.0001542
- 18. Partridge J.L., Abdulagatov A.I., Sharma V. et al. // Appl. Surf. Sci. 2023. V. 638. P. 157923. https://doi.org/10.1016/j.apsusc.2023.157923
- 19. Partridge J.L., Abdulagatov A.I., Zywotko D.R. et al. // Chemistry of Materials. 2024. V. 36. № 15. P. 7151. https://doi.org/10.1021/acs.chemmater.4c00862
- 20. Murdzek J.A., George S.M. // J. Vac. Sci. Technol., A. 2020. V. 38. № 2. P. 022608. https://doi.org/10.1116/1.5135317
- 21. Mameli A., Verheijen M.A., Mackus A.J.M. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 44. P. 38588. https://doi.org/10.1021/acsami.8b12767
- 22. Zywotko D.R., George S.M. // Chemistry of Materials. 2017. V. 29. № 3. P. 1183. https://doi.org/10.1021/acs.chemmater.6b04529
- 23. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
- 24. Mohimi E., Chu X.I., Trinh B.B. et al. // ECS Journal of Solid-State Science and Technology. 2018. V. 7. № 9. P. 491. https://doi.org/10.1149/2.0211809jss
- 25. Chittock N.J., Maas J.F.W., Tezsevin I. et al. // J. Mater. Chem. C. Mater. 2024. V. 13. № 3. P. 1345. https://doi.org/10.1039/d4tc03615h
- 26. Kim Y., Chae S., Ha H. et al. // Appl. Surf. Sci. 2023. V. 619. P. 156751. https://doi.org/10.1016/j.apsusc.2023.156751
- 27. Neese F. // Wiley Interdiscip Rev Comput Mol. Sci. 2012. V. 2. № 1. P. 73. https://doi.org/10.1002/wcms.81
- 28. Thompson A.P., Aktulga H.M., Berger R. et al. // Comput. Phys. Commun. 2022. V. 271. P. 108171. https://doi.org/10.1016/j.cpc.2021.108171
- 29. Buckingham R. // Proc. R. Soc. Lond. A. 1938. V. 168. № 933. P. 264. https://doi.org/10.1098/rspa.1938.0173
- 30. Binks D.J., Grimes R.W. // J. Am. Ceram. Soc. 1993. V. 76. № 9. P. 2370. https://doi.org/10.1111/j.1151-2916.1993.tb07779.x
- 31. Darden T., York D., Pedersen L. // J. Chem. Phys. 1993. V. 98. № 12. P. 10089. https://doi.org/10.1063/1.464397
- 32. Nosé S. // J. Chem. Phys. 1984. V. 81. № 1. P. 511. https://doi.org/10.1063/1.447334
- 33. Hoover W.G. // Phys. Rev. A. 1985. V. 31. № 3. P. 1695. https://doi.org/10.1103/PhysRevA.31.1695
- 34. Wang J., Xiao P., Zhou M. et al. // J. Appl. Phys. 2010. V. 107. № 2. P. 023512. https://doi.org/10.1063/1.3277053
- 35. Binks D.J., Grimes R.W. // J. Am. Ceram. Soc. 1993. V. 76. № 9. P. 2370. https://doi.org/10.1111/j.1151-2916.1993.tb07779.x
- 36. Bergner A., Dolg M., Küchle W. et al. // Mol. Phys. 1993. V. 80. № 6. P. 1431. https://doi.org/10.1080/00268979300103121
- 37. Dittmer A., Isak R., Neese F. et al. // Inorg. Chem. 2019. V. 58. № 14. P. 9303. https://doi.org/10.1021/acs.inorgehem.9b00994
- 38. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158. https://doi.org/10.1063/1.478522
- 39. Weigend F., Ahriches R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297. https://doi.org/10.1039/b508541a
- 40. Deng X.Y., Liu G.H., Jing X.P. et al. // Int. J. Quantum Chem. 2014. V. 114. № 7. P. 468. https://doi.org/10.1002/qua.24593
- 41. Grimme S., Antony J., Ehrlich S. et al. // J. Chem. Phys. 2010. V. 132. № 15. P. 154104. https://doi.org/10.1063/1.3382344
- 42. Johnson E.R., Becke A.D. // J. Chem. Phys. 2005. V. 123. № 2. P. 024101. https://doi.org/10.1063/1.1949201
- 43. ChemCraft — graphical software for visualization of quantum chemistry computations. Version 1.8, build 682. https://www.chemcraftprog.com
- 44. Momma K., Izumi F. // J. Appl Crystallogr. 2011. V. 44. № 6. P. 1272. https://doi.org/10.1107/S0021889811038970
- 45. Manbeck K.A., Boaz N.C., Bair N.C. et al. // J. Chem. Educ. 2011. V. 88. № 10. P. 1444. https://doi.org/10.1021/ed1010932
- 46. Allen G., Dwek R.A. // Journal of the Chemical Society B: Physical Organic. 1966. P. 161. https://doi.org/10.1039/J29660000161
- 47. Cai J., Ma Z., Wejinya U. et al. // J. Mater. Sci. 2019. V. 54. № 7. P. 5236. https://doi.org/10.1007/s10853-018-03260-3
- 48. Malkin A.I., Popov D.A. // Physics of Metals and Metallography. 2022. V. 123. № 12. P. 1234. https://doi.org/10.1134/S0031918X22601585
- 49. Malkin A.I. // Colloid Journal. 2012. V. 74. № 2. P. 223. https://doi.org/10.1134/S1061933X12020068