RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

IRON AND BIOCHAR-BASED CATALYSTS (Fe/C) FOR HYDROGEN PRODUCTION BY METHANE DECOMPOSITION

PII
S3034560X25100075-1
DOI
10.7868/S3034560X25100075
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 10
Pages
1295-1303
Abstract
This article discusses catalysts for one of the environmentally friendly methods of hydrogen production (without carbon oxide emissions) based on the reaction of methane decomposition. Iron-containing systems applied to a carbon carrier — biochar — are used as catalysts. The active component (Fe) was applied by the method of incipient wetness impregnation from a solution of iron(III) nitrate nonahydrate. The catalytic systems were investigated under the conditions of the methane decomposition reaction and studied by physicochemical methods of analysis (Raman spectroscopy, X-ray phase analysis, transmission electron microscopy, elemental analysis, atomic absorption analysis). It was revealed that the catalysts are characterized by a graphite-like carbon structure in which iron-containing nanoparticles are uniformly distributed. The catalytic activity of the obtained systems in the temperature range of 500–850°C was estimated. The maximum conversion of methane is observed at a process temperature of 700°C on iron-containing biochar synthesized at a temperature of 250°C, and is 12.2%. The carbon product that is formed during the experiment is carbon nanotubes and onion-shaped carbon.
Keywords
целлюлоза гидротермальная карбонизация биоуголь каталитическое разложение метана углеродные нанотрубки
Date of publication
01.10.2025
Year of publication
2025
Number of purchasers
0
Views
55

References

  1. 1. Zhou Y., Wang Y., Yang M. // Energy Convers. Manage. 2024. V. 304. P. 118223. https://doi.org/10.1016/J.ENCONMAN.2024.118223
  2. 2. Hakkak M., Altintag N., Hakkak S. // Renew. Energy Focus. 2023. V. 46. P. 356. https://doi.org/10.1016/J.REF.2023.07.005
  3. 3. Liu G., Guo T., Wang P. et al. // Heliyon. 2024. V. 10. № 18. P. E36219. https://doi.org/10.1016/J.HELIYON.2024.E36219
  4. 4. Alshawaf M., van Haute M., Alsayegh O. et al. // Renew. Sustain. Energy Rev. 2025. V. 212. P. 115421. https://doi.org/10.1016/J.RSER.2025.115421
  5. 5. Tahmashi M., Siavashi M., Ahmadi R. // Energy Convers. Manage. X. 2025. V. 26. P. 101005. https://doi.org/10.1016/J.ECMX.2025.101005
  6. 6. Zuo X., Toam Q., Zhong Y. // Int. J. Hydrogen Energy. 2025. V. 118. P. 426. https://doi.org/10.1016/J.IJHYDENE.2025.03.171
  7. 7. Хеанова Р.Б., Долгих В.Д., Иванов С.А. и др. // Сибирский физ. журн. 2024. Т. 18. № 3. C. 95. https://doi.org/10.25205/2541-9447-2023-18-3-95-103
  8. 8. Bibak F., Meshkani F. // Fuel. 2024. V. 366. P. 131048. https://doi.org/10.1016/J.FUEL.2024.131048
  9. 9. Осипов А.Р., Сидорчик И.А., Шляпин Д.А. и др. // Катализ в промышленности. 2021. Т. 1. № 1–2. C. 47. https://doi.org/10.18412/1816-0387-2021-1-2-47-54
  10. 10. Li S., Liao J., Zhang Z. et al. // Resour. Chem. Mater. 2025. V. 4. № 4. P. 100123. https://doi.org/10.1016/J.RECM.2025.100123
  11. 11. Muradov N., Smith F., T-Raissi A. // Catal. Today. 2005. V. 102–103. P. 225. https://doi.org/10.1016/J.CATTOD.2005.02.018
  12. 12. Muradov N. // Catal. Commun. 2001. V. 2. № 3–4. P. 89. https://doi.org/10.1016/S1566-7367 (01)00013-9
  13. 13. Vander Wal R., Makiesse Nikawete M. // J. Carbon Research. 2020. V. 6. № 2. P. 23. https://doi.org/10.3390/c6020023
  14. 14. Krylova A., Krysanova K., Kulikova M. et al. // Energies. 2021. V. 14. № 18. P. 5890. https://doi.org/10.3390/en14185890
  15. 15. Sivakumar G., Karattil Suresh A., Nag D. et al. // Int. J. Hydrogen Energy. 2025. V. 121. P. 42. https://doi.org/10.1016/J.IJHYDENE.2025.03.270
  16. 16. Liu Z., Zhao L., Yao Z. et al. // Chem. Eng. J. 2023. V. 476. P. 146373. https://doi.org/10.1016/J.CEJ.2023.146373
  17. 17. Zhang P., Fan J., Wang Y. et al. // Carbon N. Y. 2024. V. 222. P. 118998. https://doi.org/10.1016/J.CARBON.2024.118998
  18. 18. Yu J., Sun L., Berrucco C. et al. // J. Anal. Appl. Pyrolysis. 2018. V. 130. P. 127. https://doi.org/10.1016/j.jaap.2018.01.018
  19. 19. Guizani C., Haddad K., Limousy L. et al. // Carbon N. Y. 2017. V. 119. P. 519. https://doi.org/10.1016/j.carbon.2017.04.078
  20. 20. Zhu X., Liu Y., Qian F. et al. // ACS Sustain. Chem. Eng. 2015. V. 3. № 5. P. 833. https://doi.org/10.1021/acsuschemeng.5b00153
  21. 21. Sevilla M., Fuertes A.B. // Carbon N. Y. 2009. V. 47. № 9. P. 2281. https://doi.org/10.1016/j.carbon.2009.04.026
  22. 22. Hautoko D., Khan W.U., Putra A.F.P. et al. // Ind. Eng. Chem. Res. 2024. V. 63. № 44. P. 18869. https://doi.org/10.1021/acs.iecr.4c02856
  23. 23. Osipov A.R., Sidorchik I.A., Shlyapin D.A. et al. // Catal. Ind. 2021. V. 13. № 3. P. 244. https://doi.org/10.1134/S2070050421030089
  24. 24. Vedele P., Sartoretti E., Torretti G. et al. // Chem. Eng. J. 2025. V. 514. P. 163392. https://doi.org/10.1016/J.CEJ.2025.163392
  25. 25. Hautoko D., Khan W.U., Alomran A.M. et al. // Catal. Today. 2025. V. 453. P. 115259. https://doi.org/10.1016/J.CATTOD.2025.115259
  26. 26. Bire S.S., Deshmukh S.K. // Bio-derived Carbon Nanostructures. 2024. P. 129. https://doi.org/10.1016/B978-0-443-13579-8.00014-0
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library