- PII
- S3034560X25100046-1
- DOI
- 10.7868/S3034560X25100046
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 10
- Pages
- 1258-1268
- Abstract
- A comparative analysis of the surface processes of atomic layer deposition (ALD) of AlMoO using HO, molybdenum (VI) oxydichloride (MoOCl), trimethylaluminium (Al(CH), TMA) or aluminum chloride (AlCl) was carried out. The difference between AlMoO's ALD processes was the use of TMA or AlCl as an aluminum precursor. XPS analysis of the deposited films revealed that the molybdenum content was lower than the aluminum content. Molybdenum in the oxidation state of Mo and reduced forms of molybdenum (Mo and Mo) were also found in the films; the ratio of the atomic concentration of Mo+6 to Mo and Mo+4 in the case of the TMA process was 0.76 : 1, and in the case of AlCl — 6.3 : 1. The replacement of TMA with AlCl in the AlMoO ALD process has significantly reduced the amount of reduced Mo in films. To evaluate the thermodynamic parameters of film growth reactions, molybdenum reduction, and MoO to AlO conversion for ALD using AlCl and TMA, quantum chemical calculations using the DFT method were performed. According to the calculated data, AlMoO ALD using TMA is more thermodynamically advantageous in comparison with AlCl3 due to the greater reactivity of TMA.
- Keywords
- молекулярное наслаивание теория функционала плотности
- Date of publication
- 01.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 80
References
- 1. Magkoev T.T., Mustafaeva D.G., Zadlishvili V.B. et al. // Materials. 2022. V. 15. P. 2245. https://doi.org/10.3390/ma15062245
- 2. Харамирова Р.Н., Зайдман Н.М., Плясова Л.М. и др. // Кинетика и катализ. 1973. Т. 14. № 6. С. 1538.
- 3. Haber J. The Role of Molybdenum in Catalysis / London: Climax Molybdenum Co., 1981. 479 p.
- 4. Dondi M., Matteucci F., Baldi G. et al. // Dyes Pigm. 2008. V. 76. № 1. P. 179. https://doi.org/10.1016/j.dyepig.2006.08.021
- 5. Davis B.E., Strandwitz N.C. // IEEE J. Photovolt. 2020. V. 10. № 3. P. 722. https://doi.org/10.1109/jphotov.2020.2973447
- 6. Chowdhury S., Khokhar M.Q., Pham D.Ph. et al. // ECS J. Solid State Sci. Technol. 2022. V. 11. № 1. P. 015004. https://doi.org/10.1149/2162-8777/ac4d83
- 7. Erdemir A.A. // Tribol. Lett. 2000. V. 8. № 2–3. P. 97. https://doi.org/10.1023/A:1019183101329
- 8. Erdemir A.A. // Surf. Coat. Technol. 2005. V. 200. № 5–6. P. 1792. https://doi.org/10.1016/j.surfcoat.2005.08.054
- 9. Matsumoto Y., Shimanouchi R. // Procedia Eng. 2016. V. 148. P. 158. https://doi.org/10.1016/j.proeng.2016.06.507
- 10. Малахова А.А. // Изв. СПбГТИ (ТУ). Т. 1. № 27. С. 14.
- 11. Кольцов С.И., Алесковский В.Б. // Журн. физ. химии. 1968. Т. 42 С. 1210
- 12. Алесковский В.Б. // Журн. прикл. химии. 1974. Т. 47. № 10. С. 2145.
- 13. Алесковский В.Б. Химия надмолекулярных соединений: Учеб. пособие. СПб.: Изд-во С.-Петербургского университета, 1996. 256 с.
- 14. Малахова А.А., Малков А.А., Соснов Е.А. // Журн. неорган. химии. 2024. Т. 69, № 3. С. 294. https://doi.org/10.31857/s0044457x24030046
- 15. Popov G., Mattinen M., Vibervaara A. et al. // J. Vac. Sci. Technol. A. 2025. Vol. 43. № 3. P. 030801. https://doi.org/10.1116/6.0004320
- 16. George S.M. // Chem. Rev. 2010. V. 110. P. 111. https://doi.org/10.1021/cr900056b
- 17. Максумова А.М., Бодалёв Н.С., Сулейманов С.И. и др. // Неорган. материалы. 2023. Т. 59. № 4. С. 384. https://doi.org/10.31857/S0002337X2304005X
- 18. Максумова А.М., Бодалёв Н.С., Абдуласатов Н.М. и др. // Журн. неорган. химии. 2024. Т. 69. С. 110
- 19. Maksumova A.M., Bodalev I.S., Gadzhimuradov S.G. et al. // Russ. J. Appl. Chem. 2024. V. 97. № 7. P. 595. https://doi.org/10.1134/S1070427224070024
- 20. De Castro I.A., Datta R.S., Ou J.Z. et al. // Adv. Mater. 2017. V. 29. № 40. P. 1701619. https://doi.org/10.1002/adma.201701619
- 21. Етмишева С.С., Гаджимурадов С.Г., Максумова А.М. и др. // Тезисы докл. конференции Кузнецовские чтения–2024, Новосибирск. 2024. С. 21.
- 22. Neese F., Wennmohs F., Becker U. et al. // J. Chem. Phys. 2020. V. 152. P. 224108. https://doi.org/10.1063/5.0004608.21
- 23. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 1396. https://doi.org/10.1103/PhysRevLett.77.3865
- 24. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297. https://doi.org/10.1039/b508541a
- 25. Гаджимурадов С.Г., Сулейманов С.И., Максумова А.М. и др. // Изв. вузов. Химия и хим. технология. 2023. Т. 68. № 3. С. 50. https://doi.org/10.6060/rvkt.20256803.7132
- 26. Дроздов Е.О., Гукова А.Н., Дубровенский С.Д. et al. // Журн. общ. химии. 2016. Т. 86. С. 1551. https://doi.org/10.36807/1998-9849-2022-63-89-35-44
- 27. Baltrusaitis J., Mendoza-Sanchez B., Fernandez V. et al. // Appl. Surf. Sci. 2015. V. 326. P. 151. https://doi.org/10.1016/j.apsusc.2014.11.077
- 28. Choi J.G., Thompson L.T. // Appl. Surf. Sci. 1995. V. 93. № 2. P. 143. https://doi.org/10.1016/0169-4332 (95)00317-7
- 29. Clayton C.R., Lu Y.C // Surf. Interface Anal. 1989. V. 14. № 1–2. P. 66.
- 30. Етмишева С.С., Максумова А.М., Гаджимурадов С.Г. и др. // Тезисы докл. XV Конференции молодых ученых по общей и неорганической химии ИОНХ РАН. Москва, 2025 г. С. 109.
- 31. Oh I., Sandoval T.E., Liu T., et al. // J. Am. Chem. Soc. 2022. V. 144. № 26. P. 11757. https://doi.org/10.1021/jacs.2c03752
- 32. Juppo M., Alen P., Riihelä M. et al. // Chem. Vap. Deposition. 2001. V. 7. № 5. P. 211. https://doi.org/10.1002/1521-3862 (200109)7:53.0.CO;2-L