RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

ATOMIC LAYER DEPOSITION AlMoO OF FILMS USING ALUMINUM TRICHLORIDE OR TRIMETHYLALUMINIUM AND QUANTUM CHEMICAL CALCULATIONS OF GROWTH, REDUCTION AND CONVERSION PROCESSES

PII
S3034560X25100046-1
DOI
10.7868/S3034560X25100046
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 10
Pages
1258-1268
Abstract
A comparative analysis of the surface processes of atomic layer deposition (ALD) of AlMoO using HO, molybdenum (VI) oxydichloride (MoOCl), trimethylaluminium (Al(CH), TMA) or aluminum chloride (AlCl) was carried out. The difference between AlMoO's ALD processes was the use of TMA or AlCl as an aluminum precursor. XPS analysis of the deposited films revealed that the molybdenum content was lower than the aluminum content. Molybdenum in the oxidation state of Mo and reduced forms of molybdenum (Mo and Mo) were also found in the films; the ratio of the atomic concentration of Mo+6 to Mo and Mo+4 in the case of the TMA process was 0.76 : 1, and in the case of AlCl — 6.3 : 1. The replacement of TMA with AlCl in the AlMoO ALD process has significantly reduced the amount of reduced Mo in films. To evaluate the thermodynamic parameters of film growth reactions, molybdenum reduction, and MoO to AlO conversion for ALD using AlCl and TMA, quantum chemical calculations using the DFT method were performed. According to the calculated data, AlMoO ALD using TMA is more thermodynamically advantageous in comparison with AlCl3 due to the greater reactivity of TMA.
Keywords
молекулярное наслаивание теория функционала плотности
Date of publication
01.10.2025
Year of publication
2025
Number of purchasers
0
Views
80

References

  1. 1. Magkoev T.T., Mustafaeva D.G., Zadlishvili V.B. et al. // Materials. 2022. V. 15. P. 2245. https://doi.org/10.3390/ma15062245
  2. 2. Харамирова Р.Н., Зайдман Н.М., Плясова Л.М. и др. // Кинетика и катализ. 1973. Т. 14. № 6. С. 1538.
  3. 3. Haber J. The Role of Molybdenum in Catalysis / London: Climax Molybdenum Co., 1981. 479 p.
  4. 4. Dondi M., Matteucci F., Baldi G. et al. // Dyes Pigm. 2008. V. 76. № 1. P. 179. https://doi.org/10.1016/j.dyepig.2006.08.021
  5. 5. Davis B.E., Strandwitz N.C. // IEEE J. Photovolt. 2020. V. 10. № 3. P. 722. https://doi.org/10.1109/jphotov.2020.2973447
  6. 6. Chowdhury S., Khokhar M.Q., Pham D.Ph. et al. // ECS J. Solid State Sci. Technol. 2022. V. 11. № 1. P. 015004. https://doi.org/10.1149/2162-8777/ac4d83
  7. 7. Erdemir A.A. // Tribol. Lett. 2000. V. 8. № 2–3. P. 97. https://doi.org/10.1023/A:1019183101329
  8. 8. Erdemir A.A. // Surf. Coat. Technol. 2005. V. 200. № 5–6. P. 1792. https://doi.org/10.1016/j.surfcoat.2005.08.054
  9. 9. Matsumoto Y., Shimanouchi R. // Procedia Eng. 2016. V. 148. P. 158. https://doi.org/10.1016/j.proeng.2016.06.507
  10. 10. Малахова А.А. // Изв. СПбГТИ (ТУ). Т. 1. № 27. С. 14.
  11. 11. Кольцов С.И., Алесковский В.Б. // Журн. физ. химии. 1968. Т. 42 С. 1210
  12. 12. Алесковский В.Б. // Журн. прикл. химии. 1974. Т. 47. № 10. С. 2145.
  13. 13. Алесковский В.Б. Химия надмолекулярных соединений: Учеб. пособие. СПб.: Изд-во С.-Петербургского университета, 1996. 256 с.
  14. 14. Малахова А.А., Малков А.А., Соснов Е.А. // Журн. неорган. химии. 2024. Т. 69, № 3. С. 294. https://doi.org/10.31857/s0044457x24030046
  15. 15. Popov G., Mattinen M., Vibervaara A. et al. // J. Vac. Sci. Technol. A. 2025. Vol. 43. № 3. P. 030801. https://doi.org/10.1116/6.0004320
  16. 16. George S.M. // Chem. Rev. 2010. V. 110. P. 111. https://doi.org/10.1021/cr900056b
  17. 17. Максумова А.М., Бодалёв Н.С., Сулейманов С.И. и др. // Неорган. материалы. 2023. Т. 59. № 4. С. 384. https://doi.org/10.31857/S0002337X2304005X
  18. 18. Максумова А.М., Бодалёв Н.С., Абдуласатов Н.М. и др. // Журн. неорган. химии. 2024. Т. 69. С. 110
  19. 19. Maksumova A.M., Bodalev I.S., Gadzhimuradov S.G. et al. // Russ. J. Appl. Chem. 2024. V. 97. № 7. P. 595. https://doi.org/10.1134/S1070427224070024
  20. 20. De Castro I.A., Datta R.S., Ou J.Z. et al. // Adv. Mater. 2017. V. 29. № 40. P. 1701619. https://doi.org/10.1002/adma.201701619
  21. 21. Етмишева С.С., Гаджимурадов С.Г., Максумова А.М. и др. // Тезисы докл. конференции Кузнецовские чтения–2024, Новосибирск. 2024. С. 21.
  22. 22. Neese F., Wennmohs F., Becker U. et al. // J. Chem. Phys. 2020. V. 152. P. 224108. https://doi.org/10.1063/5.0004608.21
  23. 23. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 1396. https://doi.org/10.1103/PhysRevLett.77.3865
  24. 24. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297. https://doi.org/10.1039/b508541a
  25. 25. Гаджимурадов С.Г., Сулейманов С.И., Максумова А.М. и др. // Изв. вузов. Химия и хим. технология. 2023. Т. 68. № 3. С. 50. https://doi.org/10.6060/rvkt.20256803.7132
  26. 26. Дроздов Е.О., Гукова А.Н., Дубровенский С.Д. et al. // Журн. общ. химии. 2016. Т. 86. С. 1551. https://doi.org/10.36807/1998-9849-2022-63-89-35-44
  27. 27. Baltrusaitis J., Mendoza-Sanchez B., Fernandez V. et al. // Appl. Surf. Sci. 2015. V. 326. P. 151. https://doi.org/10.1016/j.apsusc.2014.11.077
  28. 28. Choi J.G., Thompson L.T. // Appl. Surf. Sci. 1995. V. 93. № 2. P. 143. https://doi.org/10.1016/0169-4332 (95)00317-7
  29. 29. Clayton C.R., Lu Y.C // Surf. Interface Anal. 1989. V. 14. № 1–2. P. 66.
  30. 30. Етмишева С.С., Максумова А.М., Гаджимурадов С.Г. и др. // Тезисы докл. XV Конференции молодых ученых по общей и неорганической химии ИОНХ РАН. Москва, 2025 г. С. 109.
  31. 31. Oh I., Sandoval T.E., Liu T., et al. // J. Am. Chem. Soc. 2022. V. 144. № 26. P. 11757. https://doi.org/10.1021/jacs.2c03752
  32. 32. Juppo M., Alen P., Riihelä M. et al. // Chem. Vap. Deposition. 2001. V. 7. № 5. P. 211. https://doi.org/10.1002/1521-3862 (200109)7:53.0.CO;2-L
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library