RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

HEAT CAPACITY AND THERMODYNAMIC PROPERTIES OF COMPLEX OXIDES WITH β-PYROCLORE STRUCTURE CsTeMoO AND CsVTeO

PII
S3034560X25090095-1
DOI
10.7868/S3034560X25090095
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 9
Pages
1172-1179
Abstract
The heat capacity of complex oxides with β-pyrochlore structure CsTeMoO and CsVTeO was investigated by adiabatic vacuum and differential scanning calorimetry in the temperature range of = 5–500 K. The standard thermodynamic functions: heat capacity , enthalpy [], absolute entropy [] and the Gibbs energy [] for the range from → 0 to 500 K were calculated based on the obtained experimental data. The low-temperature ( < 50 K) heat capacity dependence was analyzed on the basis of multifractal model and chain-layered structure topology of the studied compounds was established.
Keywords
CsTeMoO CsVTeO адиабатическая калориметрия дифференциальная сканирующая калориметрия теплоемкость термодинамические функции
Date of publication
01.09.2025
Year of publication
2025
Number of purchasers
0
Views
30

References

  1. 1. Hoffmann M.R., Martin S.T., Choi W. et al. // Chem. Rev. 2002. V. 95. № 1. P. 69. http://dx.doi.org/10.1021/cr00033a004
  2. 2. Kudo A., Miseki Y. // Chem. Soc. Rev. 2009. V. 38. P. 253. https://doi.org/10.1039/B800489G
  3. 3. Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid St. Chem. 1983. V. 15. P. 55.
  4. 4. Sakai H., Yoshimura K., Ohno H. et al. // J. Condens. Matter Phys. 2001. V. 13. № 33. https://doi.org/10.1016/S0921-4534 (02)01379-5
  5. 5. Ikeda S., Itani T., Nango K. et al. // Cat. Let. 2004. V. 98. № 4. P. 229. https://doi.org/10.1007/s10562-004-8685-y
  6. 6. Gardner J.S., Gingras M.J.P., Greedan J.E. // Rev. Mod. Phys. 2010. V. 83. P. 53. https://doi.org/10.1103/RevModPhys.82.53
  7. 7. Kako T., Kikugawa N., Ye J. // Cat. Today. 2002. V. 131. P. 197. https://doi.org/10.1016/j.cattod.2007.10.094
  8. 8. Reddy J.R., Ravi G., Veldurthi N.K. et al. // Z. Anorg. Allg. Chem. 2013. V. 639. № 5. P. 794. https://doi.org/10.1021/jp063406s
  9. 9. Varlamova L.A., Ignatov S.K., Fukina D.G. et al. // J. Phys. Chem. C. 2018. V. 122. P. 24907. https://doi.org/10.1021/acs.jpcc.8b07117
  10. 10. Gorshkov A.P., Mazhukina K.A., Volkova N.S. et al. // J. Solid State Chem. 2022. V. 310. P. 123083. https://doi.org/10.1016/j.jssc.2022.123083
  11. 11. Fukina D.G., Shotina V.A., Boryakov A.V. et al. // Chem. Photo Chem. 2023. P. e202300072. https://doi.org/10.1002/cptc.202300072
  12. 12. Fukina D.G., Koryagin A.V., Titaev D.N. et al. // Eur. J. Inorg. Chem. 2022. P. e202200371. https://doi.org/10.1002/ejic.202200371
  13. 13. Fukina D.G., Koryagin A.V., Koroleva A.V. et al. // J. Solid State Chem. 2021. V. 300. P. 122235. https://doi.org/10.1016/j.jssc.2021.122235
  14. 14. Markin A.V., Smirnova N.N., Goryunova P.E. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1718. https://doi.org/10.1134/S0036023624602447
  15. 15. Markin A.V., Smirnova N.N., Fukina D.G. et al. // J. Chem. Thermodyn. 2021. V. 160. P. 106492. https://doi.org/10.1016/j.jct.2021.106492
  16. 16. Fukina D.G., Suleimanov E.V., Fukin G.K. et al. // J. Solid State Chem. 2019. V. 272. P. 47. https://doi.org/10.1016/j.jssc.2020.121267
  17. 17. Fukina D.G., Shotina V.A., Boryakov A.V. et al. // Eur. J. Inorg. Chem. 2023. P. e202200766. https://doi.org/10.1002/ejic.202200766
  18. 18. Varushchenko R.M., Druzhinina A.I., Sorkin E.L. // J. Chem. Thermodyn. 1997. V. 29. P. 623. https://doi.org/10.1006/jcht.1996.0173
  19. 19. Sabbah R., Xu-wu A., Chickos J.S. et al. // Thermochim. Acta. 1999. V. 331 (2). P. 93. https://doi.org/10.1016/S0040-6031 (99)00009-X
  20. 20. Höhne G.W.H., Hemminger W.F., Flammersheim H.-J. Differential scanning calorimetry / New York, Springer-Verlag Berlin Heidelberg, 2003. https://doi.org/10.1007/978-3-662-06710-9
  21. 21. Drebushchak V.A. // J. Therm. Anal. Calorim. 2005. V. 79. P. 213. https://doi.org/10.1007/s10973-004-0586-1
  22. 22. Della Gatta G., Richardson M.J., Sarge S.M. et al. // Pure Appl. Chem. 2006. V. 78. P. 1455. https://doi.org/10.1351/pac200678071455
  23. 23. Lazarev V.B., Izotov A.D., Gavrichev K.S. et al. // Thermochim. Acta. 1995. V. 269/270. P. 109. https://doi.org/10.1016/0040-6031 (95)02529-4
  24. 24. Тарасов В.В. // Журн. физ. химии. 1950. Т. 24. № 1. С. 111.
  25. 25. Lebedev B.V. // Thermochim. Acta. 1997. V. 297. P. 143.
  26. 26. Cullough J.P., Scott D.W. Calorimetry of Non-reacting Systems / London, Butterworth, 1968.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library