- PII
- S3034560X25090047-1
- DOI
- 10.7868/S3034560X25090047
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 9
- Pages
- 1127-1137
- Abstract
- The partial substitution of Zr in siliconposphate NaZrSiPO by a trivalent element has been investigated in this work. On the example of Fe-substituted NASICON it is shown that the formed complex does not correspond to the generally accepted formula NaM(III)ZrSiPO, in which electroneutrality of the obtained composition is achieved by charge compensation by additional Na ions. The formation of NaM(III)ZrSiPO complexes was established on the basis of X-ray phase analysis, scanning electron microscopy and refinement of crystal lattice parameters by the Rietveld method. The precursor composition NaM(III)ZrSiPO is excessive in Na and Si for the Fe-substituted complex. Elements that are superstoichiometric for the new crystal lattice are partially incorporated into the main NASICON phase, increasing the parameters of the unit cell, and partially participate in the formation of additional phases: amorphous or crystalline. The amorphous phase is formed at grain boundaries of low dopant compositions. Impurity crystalline phases are formed in high dopant compositions.
- Keywords
- NASICON железо гетеровалентное замещение микроструктура
- Date of publication
- 01.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 33
References
- 1. Ahmad H., Kubra K.T., Butt A. et al. // J. Power Sources. 2023. V. 581. Р. 233518. https://doi.org/10.1016/j.jpowsour.2023.233518
- 2. Lu Y., Li L., Zhang Q. et al. // Joule. 2018. V. 2. № 9. P. 1747. https://doi.org/10.1016/j.joule.2018.07.028
- 3. Wang Y., Song S., Xu C. et al. // Nano Mater. Sci. 2019. V. 1. № 2. P. 91. https://doi.org/10.1016/j.nanoms.2019.02.007
- 4. Singh M.D., Kaur G., Sharma S. et al. // J. Energy Storage. 2021. V. 41. P. 102984. https://doi.org/10.1016/j.est.2021.102984
- 5. Li X., Hu E., Wang F. et al. // J. Mater. Chem. A. 2024. V. 12. № 8. P. 4796. https://doi.org/10.1039/D3TA05182J
- 6. Zhong C., Deng Y., Hu W. et al. // Chem. Soc. Rev. 2015. V. 44. P. 7484. https://doi.org/10.1039/c5cs00303b
- 7. Fergus J.-W. // Solid State Ionics. 2012. V. 227. P. 102. https://doi.org/10.1016/j.ssi.2012.09.019
- 8. Jolley A.G., Taylor D.D., Schreiber N.J., Eric D. // J. Am. Ceram. Soc. 2015. V. 98. № 9. P. 2902. https://doi.org/10.1111/jace.13692
- 9. Jolley A.G., Cohn G., Hitz G.T., Wachsman E.D. // Ionics. 2015. V. 21. P. 3031. https://doi.org/10.1007/s11581-015-1498-8
- 10. Chen D., Luo F., Zhou W., Zhu D. // J. Alloys Compd. 2018. V. 757. P. 348. https://doi.org/10.1016/j.jallcom.2018.05.116
- 11. Zhang Z., Zhang Q., Shi J. et al. // Adv. Energy Mater. 2016. V. 7. P. 1601196. https://doi.org/10.1002/aenm.201601196
- 12. Zhang Q., Liang F., Qu T. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2018. V. 423. Р. 012122. https://doi.org/10.1088/1757-899X/423/1/012122
- 13. Ma Q., Guin M., Naqash S. et al. // Chem. Mater. 2016. V. 28 Р. 4821. https://doi.org/10.1021/acs.chemmater.6b02059
- 14. Khakpour Z. // Electrochim. Acta. 2016. V. 196. Р. 337. https://doi.org/10.1016/j.electacta.2016.02.199
- 15. Ruan Y., Song S., Liu J. et al. // Ceram. Int. 2017. V. 43. № 10. P. 7810. https://doi.org/10.1016/j.ceramint.2017.03.095
- 16. Fuentes R.O., Figueiredo F.M., Marques F.M.B., Franco J.I. // Solid State Ionics. 2001. V. 140. № 1–2. Р. 173. https://doi.org/10.1016/S0167-2738 (01)00701-9
- 17. Samiee M., Radhakrishnan B., Rice Z. et al. // J. Power Sources. 2017. V. 347. P. 229. https://doi.org/10.1016/j.jpowsour.2017.02.042
- 18. Yadav P., Bhatnagar M.C. // J. Electroceram. 2013. V. 30. P. 145. https://doi.org/10.1007/s10832-012-9776-6
- 19. Xie B., Jiang D., Wu J. et al. // J. Phys. Chem. Solids. 2016. V. 88. P. 104. https://doi.org/10.1016/j.jpcs.2015.10.003
- 20. Rao Y.B., Bharathi K.K., Patro L.N. // Solid State Ionics. 2021. V. 366-367. P. 115671. https://doi.org/10.1016/j.ssi.2021.115671
- 21. Грищенко Д.Н., Медков М.А. // Журн. неорган. химии. 2023. Т. 68. № 8. С. 1042. https://doi.org/10.31857/S0044457X23600366
- 22. Squattrito P.J., Rudolf P.R., Jorgensen J.D. et al. // Solid State Ionics. 1988. V. 31. Р. 31.
- 23. Subramanian M.A., Rudolf P.R., Clearfield A. // J. Solid State Chem. 1985. V. 60. Р. 172.
- 24. Grishchenko D.N., Medkov M.A. // Theor. Found. Chem. Eng. 2024. V. 58. № 2. P. 261. https://doi.org/10.1134/S0040579524700428
- 25. Oh J.A.S., He L., Plewa A. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 40125. https://doi.org/10.1021/acsami.9b14986
- 26. Wang H., Zhao G., Wang S. et al. // Nanoscale. 2022. V. 14 № 3. P. 823. https://doi.org/10.1039/d1nr06959d