RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Influence of synthesis conditions on the optical properties of Naregeo4 phosphors with olivine structure

PII
S3034560X25010014-1
DOI
10.7868/S3034560X25010014
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 1
Pages
3-13
Abstract
The NaGdGeO4, NaY0.975Tm0.025GeO4, NaY0.975Bi0.025GeO4, NaY0.875Bi0.025Eu0.1GeO4 samples were synthesized by different methods. According to powder X-ray diffraction data, the germanates crystallize in orthorhombic system pr.gr. Pnma, Z = 4. The influence of synthesis conditions, particularly different annealing modes, on morphological and optical properties of the samples were evaluated. The luminescence properties of NaY0.975Tm0.025GeO4, NaGdGeO4 and NaY0.975Bi0.025GeO4, NaY0.875Bi0.025Eu0.1GeO4 compounds were studied in the near infrared range (1100 – 2100 nm, λex = 808 nm), in the UV region (300–320 nm, λex = 257 nm) and in the UV and visible wavelength range (300 – 700 nm, λex = 298 nm), respectively. The influence of annealing parameters on the persistent luminescence duration of the last compositions was investigated additionally.
Keywords
люминофоры оливины микроволновый синтез оптические свойства послесвечение
Date of publication
17.01.2025
Year of publication
2025
Number of purchasers
0
Views
43

References

  1. 1. Riya Deya, Vineet Kumar Rai // Dalton Trans. 2014. V. 43. P. 111. https://doi.org/10.1039/C3DT51773J
  2. 2. Scholle K., Lamrini S., Koopmann P. et al. // Front. Guided Wave Opt. Optoelectron. 2010. V. 13. № 5. https://doi.org/10.5772/39538
  3. 3. Sordillo L.A., Yang Pu, Pratavieira S. et al. // J. Biomed. Opt. 2014. V. 19. P. 56004. https://doi.org/10.1117/1.JBO.19.5.056004
  4. 4. Hao Zhang, Yang Wei, Xiao Huanga et al. // J. Lumin. 2019. V. 207. P. 137. https://doi.org/10.1016/j.jlumin.2018.10.117
  5. 5. Липина O.А., Сурат Л.Л., Меленцова А.А. и др. // ФТТ. 2021. T. 7. C. 944. https://doi.org/10.21883/FTT.2021.07.51046.050
  6. 6. Липина O.А., Спиридонова Т.С., Бакланова Я.В. и др. // Журн. неорган. химии. 2023. Т. 68. С. 603. https://doi.org/10.31857/S0044457X22601973
  7. 7. Gang Xiong, Zhanping Zhang, Yuhong Qi // Prog. Org. Coat. 2022. V. 170. P. 106965. https://doi.org/10.1016/j.porgcoat.2022.106965
  8. 8. Гырдасова О.И., Калинкин М.О., Аулов Д.А. и др. // Журн. неорган. химии. 2023. Т. 68. № 2. С. 277. https://doi.org/10.31857/S0044457X22601754
  9. 9. Dahiya M.S., Tomer V.K., Duhan S. // Appl. Nanocompos. Mater. Drug Delivery. 2008. V. 31. P. 737. https://doi.org/10.1016/B978-0-12-813741-3.00032-7
  10. 10. Lenczewska K., Szymański D., Hreniak D. // Mater. Res. Bull. 2022. V. 154. P. 111940. https://doi.org/10.1016/j.materresbull.2022.111940
  11. 11. Tang H., Tang Y., Xiao M. et al. // Colloids Surf., A. 2022. V. 651. P. 129564. https://doi.org/10.1016/j.colsurfa.2022.129564
  12. 12. Lau K.S., Hassan Z., Lim W.F. et al. // Mater. Chem. Phys. 2022. V. 292. P. 126649. https://doi.org/10.1016/j.matchemphys.2022.126649
  13. 13. Melentsova A.A., Lipina O.A., Chufarov A.Yu. et al. // J. Solid State Chem. 2023. V. 322. P. 123946. https://doi.org/10.1016/j.jssc.2023.123946
  14. 14. Latshaw A.M., Wilkins B.O., Chance W.M. et al. // J. Solid State Sci. 2016. V. 51. P. 59. https://doi.org/10.1016/j.solidstatesciences.2015.11.009
  15. 15. Tyutyunnik A.P., Leonidov I.I., Surat L.L. et al. // J. Solid State Chem. 2013. V. 197. P. 447.
  16. 16. Dudka A.P., Kaminskii A.A., Simonov V.I. // Phys. Status Solidi. 1986. V. 93. № 2. P. 495. https://doi.org/10.1002/pssa.2210930212
  17. 17. Melkozerova M.A., Artyomov M.Yu., Enyashin A.N. et al. // J. Solid State Chem. 2022. V. 315. P. 123475. https://doi.org/10.1016/j.jssc.2022.123475
  18. 18. Ermakova L.V., Leonidov I.I. // Mater. Lett. 2018. V. 233. P. 39. https://doi.org/10.1016/j.matlet.2018.08.125
  19. 19. Lin Liu, Kexin Yu, Liyan Ming et al. // J. Rare Earths. 2022. V. 40. № 9. P. 1424. https://doi.org/10.1016/j.jre.2021.04.017
  20. 20. Wenxiang Wang, Zhenyu Sun, Xiaoyang He et al. // J. Mater. Chem. 2017. V. 5. № 17. P. 4310. https://doi.org/10.1039/C6TC05598B
  21. 21. Kraus W., Nolze G. // J. Appl. Crystallogr. 1996. V. 29. P. 301.
  22. 22. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751.
  23. 23. Litvin A.Yu., Kuzyura A.V. // Geochem. Int. 2021. V. 59. № 9. P. 813. https://doi.org/10.31857/S0016752521080045
  24. 24. Koseva I., Nikolov V., Petrova N. et al. // Thermochim. Acta. 2016. V. 646. P. 1. https://doi.org/10.1016/j.tca.2016.11.004
  25. 25. Melentsova A.A., Lipina O.A., Melkozerova M.A. et al. // Ceram. Int. 2023. V. 59. № 11. P. 18681. https://doi.org/10.1016/j.ceramint.2024.02.356
  26. 26. Junpeng Xue, Hyeon Mi Noh, Byung Chun Choi et al. // Chem. Eng. J. 2020. V. 383. P. 122861. https://doi.org/10.1016/j.cej.2019.122861
  27. 27. Lin Liu, Kexin Yu, Liyan Ming et al. // J. Rare Earths. 2022. V. 40. № 9. P. 1424. https://doi.org/10.1016/j.jre.2021.04.017
  28. 28. Awater R.H.P., Dorenbos P. // J. Lumin. 2017. V. 188. P. 487. http://dx.doi.org/10.1016/j.jlumin.2017.05.011
  29. 29. Lyu T., Dorenbos P. // Chem. Mater. 2020. V. 32. № 3. P. 1192. https://dx.doi.org/10.1021/acs.chemmater.9b04341
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library