RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

PHASE EQUILIBRIA IN THE YO-SnO SYSTEM

PII
S0044457X25050106-1
DOI
10.31857/S0044457X25050106
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 5
Pages
708-714
Abstract
A series of samples in the YO-SnO system with different ratios of yttrium and tin oxides were obtained by solid-phase synthesis. The phase composition of the obtained samples was controlled by X-ray phase analysis. The obtained diffraction patterns were processed and the crystallographic parameters were calculated by full-profile analysis. The conducted study of phase equilibria in the YO-SnO system at a temperature of 1400°C made it possible to determine for the first time the homogeneity region of yttrium stannate YSnO, which is shifted towards yttrium oxide and is 33.3-36 mol. % YO. The existence of a solid solution based on cubic yttrium oxide, extending to 3 mol. % SnO, was established. A comparative analysis of the effect of the radius of the substituting tetravalent cation on the width of the homogeneity region of the solid solution based on yttrium oxide was carried out. The absence of solubility of yttrium oxide in tin dioxide was noted.
Keywords
станнат иттрия пирохлор твердый раствор
Date of publication
07.03.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem., 1983. V. 15. № 2. P. 55. https://doi.org/10.1016/0079-6786 (83)90001-8
  2. 2. Kennedy B.J., Hunter B.A. Howard Ch.J. // J. Solid State Chem. 1997. V. 130. № 1. P. 58. https://doi.org/10.1006/jssc.1997.7277
  3. 3. Jitta R.R., Gundeboina R., Veldurthi N.K. et al. // J. Chem. Technol. Biotechnol. 2015. V. 90. № 11. P. 1937. https://doi.org/10.1002/jctb.4745
  4. 4. Mallat T., Baiker A. // Chem. Rev. 2004. V.104. № 6. P. 3037. https://doi.org/10.1021/cr0200116
  5. 5. Mims C.A., Jacobson A.J., Hall R.B., Lewandowski J.T. // J. Catal. 1995. V. 153 № 2. P. 197. https://doi.org/10.1006/jcat.1995.1122
  6. 6. Borges F.H., Martins J.C., Caixeta F.J. et. al. // J. Sol-Gel Sci. Technol. 2022. V. 102. P. 249. https://doi.org/10.1007/s10971-021-05673-0
  7. 7. Xu J., Xi R., Xu X. et al. // J. Rare Earths. 2020. Vol. 38. № 8. P. 840-849 https://doi.org/10.1016/j.jre.2020.01.002
  8. 8. Fukina D.G., Belousov A.S., Suleimanov E.V. Pyrochlore Oxides: Structure, Properties, and Potential in Photocatalytic Applications / Switzerland: Springer Cham, 2024. https://doi.org/10.1007/978-3-031-46764-6
  9. 9. Ishida S., Ren F., Takeuchi N. // J. Am. Ceram. Soc. 1993. V. 76. № 10. P. 2644. https://doi.org/10.1111/j.1151-2916.1993.tb03993.x
  10. 10. Lang M., Zhang F., Zhang J. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2010. V. 268. № 19. P. 2951. https://doi.org/10.1016/j.nimb.2010.05.016
  11. 11. Ewing R.C., Weber W.J., Lian J. // J. Appl. Phys. 2004. V. 95. № 11. P. 5949. http://dx.doi.org/10.1063/1.1707213
  12. 12. Wang Y., Jing C., Ding Z.-Y. et al. // Crystals. 2023. V.13. № 1. P. 143. https://doi.org/10.3390/cryst13010143
  13. 13. Kar T., Choudhary R.N.P. // Mater. Sci. Eng., B. 2002. V. 90. № 3. P. 224. https://doi.org/10.1016/S0921-5107 (01)00745-0
  14. 14. Liu Z.G., Ouyang J.H., Sun K.N. // Fuel Cells. 2011. V. 11. № 2. P. 153. https://doi.org/10.1002/fuce.201000184
  15. 15. Yu T.-H., Tuller H.L. // Solid State Ionics. 1996. V. 86-88 P. 177. https://doi.org/10.1016/0167-2738 (96)00118-X
  16. 16. Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2023. Т. 68. № 10. С. 1462. https://doi.org/10.31857/S0044457X23600974
  17. 17. Heward W.J., Swenson D.J. // J. Mater. Sci. 2007. V. 42. P. 7135. https://doi.org/10.1007/s10853-007-1569-y
  18. 18. Денисова Л.Т., Каргин Ю.Ф., Иртюго Л.А., Денисов В.М. // Неорг. матер. 2015. Т. 51. № 7. С. 714. https://doi.org/10.7868/S0002337X15070040
  19. 19. Асрян Н.А., Кольцова Т.Н., Алиханян А.С., Нипан Г.Д. // Журн. физ. химии. 2003. Т. 77. № 11. С. 1938.
  20. 20. Li X., Cai Y.Q., Cui Q. et al. // Phys. Rev. B. 2016. V. 94. № 21. P. 214429. https://doi.org/10.1103/PhysRevB.94.214429
  21. 21. Комиссарова Л.Н., Шацкий В.М., Пушкина Г.Я. и др. Соединения редкоземельных элементов. Карбонаты, оксалаты, нитраты, титанаты / М.: Наука, 1984.
  22. 22. Andrievskaya E.R. // J. Eur. Ceram. Soc. 2008. V. 28. № 12. P. 2363. https://doi.org/10.1016/j.jeurceramsoc.2008.01.009
  23. 23. Liu C.G., Zhang J., Chen L.J. et al. // Int. J. Mod. Phys. B. 2017.V. 31. № 26. P. 1750184. https://doi.org/10.1142/S0217979217501843
  24. 24. Kong L., Karatchevtseva I., Blackford M.G. et al. // J. Am. Ceram. Soc. 2013. V. 96. № 9. P. 2994. https://doi.org/10.1111/jace.12409
  25. 25. Чернышев В.А. // Физика тв. тела. 2021. Т. 63. № 7. С. 952. https://doi.org/10.21883/FTT.2021.07.51049.027
  26. 26. Sun B.J., Liu Q.L., Liang J.M. et al. // Acta Phys. Sin. 2007. V. 56. № 12. P. 7147. https://doi.org/10.7498/aps.56.7147
  27. 27. Sun B.J., Liu Q.L., Liang J.K. et al. // J. Alloys Compd. 2008. V. 455. P. 265. https://doi.org/10.1016/j.jallcom.2007.01.046
  28. 28. Tammanoon N., Wisitsoraat A., Phokharatkul D. et al. // Sens. Actuators, B. 2018. V. 262. P. 245 https://doi.org/10.1016/j.snb.2018.01.238
  29. 29. Li. Zh., Yang Q., Wu Y. et al. // Int. J. Hydrogen Energy. 2019. V. 44. № 16. P. 8659. https://doi.org/10.1016/j.ijhydene.2019.02.050
  30. 30. Hsu Kuo-Chin, Fang Te-Hua, Hsiao Yu-Jen, Chan Ching-An. // Mater. Lett. 2020. V. 261. P. 127144. https://doi.org/10.1016/j.matlet.2019.127144
  31. 31. Gaponov A.V. // Physica B. 2022. V. 639. Art. 414010. https://doi.org/10.1016/j.physb.2022.414010
  32. 32. Parra R., Maniette Y., Varela J.A., Castro M.S. // Mater. Chem. Phys. 2005. V. 94 № 2-3. P. 347. https://doi.org/10.1016/j.matchemphys.2005.05.014
  33. 33. Baur W.H., Khan A.A. // Acta Crystallogr. Sect. B. 1971. V. 27. № 11. P. 2133. https://doi.org/10.1107/S0567740871005466
  34. 34. Shannon R.D. // Acta Crystallogr. Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
  35. 35. https://materials.springer.com/isp/phase-diagram/docs/c_0210439
  36. 36. Nayak C., Nigam S., Pandey M. et al. // Chem. Phys. Lett. 2014. V. 597. P. 51. https://doi.org/10.1016/j.cplett.2014.02.028
  37. 37. Baldinozzi G., Berar J.-F., Calvarin G. // Mater. Sci. Forum. 1998. V. 278. P. 680. https://doi.org/10.4028/www.scientific.net/MSF.278-281.680
  38. 38. Pascual C., Duran P. // J. Am. Ceram. Soc. 1983. V. 66. № 1. P. 23. https://doi.org/10.1111/j.1151-2916.1983.tb09961.x
  39. 39. Feighery A.J., Irvine J.T.S., Fagg D.P., Kaiser A. // J. Solid State Chem. 1999. V. 143. № 2. P. 273. https://doi.org/10.1006/jssc.1998.8108
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library