RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

FORMATION OF SODIUM ZIRCONIUM SILICOPHOSPHATE WITH THE STRUCTURE NaZrSiPO FROM A Zr-DEFICIENT PRECURSOR

PII
S0044457X25050079-1
DOI
10.31857/S0044457X25050079
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 5
Pages
678-686
Abstract
Samples of NASICON glass-ceramics were synthesized by pyrolysis of a mixture of organic solutions in molten rosin. The article discusses the phase formation, morphology and characteristics of the obtained silicophosphates. The composition formed from the precursor with the molar ratio of components Na : Zr : Si : P equal to 3 : 1.33 : 2 : 1 was selected for study. The effect of additional amounts of phosphorus on the phase composition of the sample was studied. It was found that the precursor of the composition 3 : 1.33 : 2 : 1.15 forms densely sintered glass-ceramics containing a crystalline phase of the composition NaZrSiPO. The composition of the product is confirmed by the unit cell parameters calculated by the Rietveld method. The samples were obtained at a temperature of 1000 and 1100°С without pressing and have densities of 85 and 88% of the theoretical value, respectively. It was concluded that Na, Si, P not included in the crystal lattice participate in the formation of the X-ray amorphous phase and provide conditions for the formation of NASICON by the type of liquid-phase sintering. A comparative characteristic of the properties of the NaZrSiPO composition obtained from Zr-deficient and non-deficient precursors was carried out. It is shown that the glass phase formed in the intergranular space of Zr-deficient samples negatively affects the conductivity values of the material.
Keywords
стеклокерамика NASICON пиролиз органических растворов
Date of publication
06.03.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Fergus J-W. // Solid State Ionics. 2012. V. 227. P. 102. https://doi.org/10.1016/j.ssi.2012.09.019
  2. 2. Fuentes R.O., Marques F.M.B., Franco J.I. // Bol. Soc. Esp. Cerám. Vidrio. 1999. V. 38. № 6. P. 631.
  3. 3. Ignaszak A., Pasierb P., Gajerski R., Komornicki S. // Thermochim. Acta. 2005. V. 426. № 1-2. P. 7. https://doi.org/10.1016/j.tca.2004.07.002
  4. 4. Грищенко Д.Н., Курявый В.Г., Подгорбунский А.Б., Медков М.А. // Журн. неорган. химии. 2023. Т. 68. № 1. С. 17. https://doi.org/10.31857/S0044457X22601043
  5. 5. Jalalian-Khakshour A., Phillips Ch., Jackson L. et al. // J. Mater. Sci. 2020. V. 55. P. 2291. https://doi.org/10.1007/s10853-019-04162-8
  6. 6. Shimizu Y., Azuma Y., Michishita S. // J. Mater. Chem. 1997. V. 7. № 8. P. 1487.
  7. 7. Zhang S., Quan B., Zhiyong Z. et al. // Mater. Lett. 2004. V. 58. № 1. P. 226. https://doi.org/10.1016/S0167-577X (03)00450-7
  8. 8. Porkodi P., Yegnaraman V., Kamaraj P. et al. // Chem. Mater. 2008. V. 20. P. 6410. https://doi.org/10.1021/cm800208k
  9. 9. Naqash S., Sebold D., Tietz F., Guillon O. // J. Am. Ceram. Soc. 2018. V. 102. № 3. P. 1057. https://doi.org/10.1111/jace.15988
  10. 10. Naqash S., Ma Q., Tietz F., Guillon O. // Solid State Ionics. 2017. V. 302. P. 83. http://dx.doi.org/10.1016/j.ssi.2016.11.004
  11. 11. Alpen U. V., Bell M.F., Höfer H.H. // Solid State Ionics. 1981. V. 3-4. P. 215. https://doi.org/10.1016/0167-2738 (81)90085-0
  12. 12. Susman S., Delbecq C.J., McMillan J.A., Roche M.F. // Solid State Ionics. 1983. V. 9-10. P. 667. https://doi.org/10.1016/0167-2738 (83)90312-0
  13. 13. Wang H., Zhao G., Wang S. et al. // Nanoscale. 2022. V. 14. № 3. P. 823. https://doi.org/10.1039/d1nr06959d
  14. 14. Oh J.A.S., He L., Plewa A. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 40125. https://doi.org/10.1021/acsami.9b14986
  15. 15. Ji Y., Honma T., Komatsu T. // Materials. 2021. V. 14. № 14. P. 3790. https://doi.org/10.3390/ma14143790
  16. 16. Narayanan S., Reid S., Butler S., Thangadurai V. // Solid State Ionics. 2019. V. 331. P. 22. https://doi.org/10.1016/j.ssi.2018.12.003
  17. 17. Грищенко Д.Н., Подгорбунский А.Б., Медков М.А. // Журн. неорган. химии. 2024. Т. 69. № 2. С. 15. https://doi.org/10.31857/S0044457X24020025
  18. 18. Rao Y.B., Bharathi K.K., Patro L.N. // Solid State Ionics. 2021. V. 366-367. P. 115671. https://doi.org/10.1016/j.ssi.2021.115671
  19. 19. Грищенко Д.Н., Медков М.А. // Журн. неорган. химии. 2023. Т. 68. № 8. С. 1042. https://doi.org/10.31857/S0044457X23600366
  20. 20. Bauerle J.E. // J. Phys. Chem. Solids. 1969. V. 30. P. 2657. https://doi.org/10.1016/0022-3697 (69)90039-0
  21. 21. Зарецкая Г.Н. // Современные наукоемкие технологии. 2007. № 6. С. 51. https://top-technologies.ru/ru/article/view?id=24998
  22. 22. Соколов И.А., Мурин И.В., Крийт В.Е., Пронкин А.А. // Электрохимия. 2011. Т. 47. № 4. C. 436.
  23. 23. Fuentes R.O., Figueiredo F.M., Marques F.M.B., Franco J.I. // Solid State Ionics. 2001. V. 140. № 1-2. P. 173. https://doi.org/10.1016/S0167-2738 (01)00701-9
  24. 24. Lee J. S., Chang C. M., Lee Y. I. et al. // J. Am. Ceram. Soc. 2004. V. 87. № 2. P. 305. https://doi.org/10.1111/j.1551-2916.2004.00305.x
  25. 25. Suzuki K., Noi K., Hayashi A., Tatsumisago M. // Scripta Mater. 2018. V. 145. P. 67. https://doi.org/10.1016/j.scriptamat.2017.10.010
  26. 26. Tang B. // Appl. Comput. Eng. 2024. V. 91. № 1. P. 89. https://doi.org/10.54254/2755-2721/91/20241079
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library