RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

CRYOPROTECTANT BASED ON A GLASS-FORMING AQUEOUS SOLUTION OF MAGNESIUM ACETATE

PII
S0044457X25050065-1
DOI
10.31857/S0044457X25050065
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 5
Pages
668-677
Abstract
For the first time a cryoprotectant based on glass-forming aqueous solution of magnesium acetate, a metal vital for the human body, was obtained and studied by DSC method. This cryoprotectant - Mg(CHCOO) ∙ 12HO - surpasses the available analogues by the following parameters: it has a high glass-forming ability (it passes from the glassy state to the liquid state without crystallization), is non-toxic and easy to obtain. Its cryoprotective ability, proved on chicken egg white, does not depend on the rate of cooling and heating. It is shown that among glass-forming solutions of Mg(CHCOO)-HO system there are five more potential cryoprotectants and preservative for hypothermic storage of biological material. The molecular mechanism preventing damage and death of biological material placed in solutions of the Mg(CHCOO)-HO system favourable for cryopreservation has been established using the density functional theory method.
Keywords
криопротектор стеклообразующая и криопротекторная способность водно-солевые стеклообразующие растворы водородная связь молекулярный механизм действия криопротектора
Date of publication
03.03.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Warner R.M., Brown K.S., Benson J.D. et. al. // Cryobiology. 2022. V. 108. P. 1. https://doi.org/10.1016/j.cryobiol.2022.09.002
  2. 2. Best B.P. // Rejuvenation Research. 2015. V. 18. № 5. P. 422. https://doi.org/10.1089/rej.2014.1656
  3. 3. Kostyaev A.A., Martusevich A.K., Andreev A.A. // Nauchnoe Obozrenie. Meditsinskie Nauki. 2016. № 6. P. 54. https://science-medicine.ru/en/article/view?id=944
  4. 4. Morris J., Acton E. // Cryobiology. 2013. V. 66. P. 85. https://doi.org/10.1016/j.cryobiol.2012.11.007
  5. 5. Elliott G.D., Wang S., Fuller B.J. // Cryobiology. 2017. V. 76. P. 74. https://doi.org/10.1016/j.cryobiol.2017.04.004
  6. 6. Zinchenko A.V., Bobrova E.N. // Dopovidi Natsional'noi Akademii Nauk Ukraini. 2010. № 12. P. 166.
  7. 7. Osei-Bempong C., Ghareeb A.E., Lako M. et. al. // Cryobiology. 2018. V. 84. P. 98. https://doi:10.1016/j.cryobiol.2018.07.008
  8. 8. Luyet B.J., Gehenio P.M. Life and death at low temperatures / Normandy: Biodinamica. 1940.
  9. 9. Polge C., Smith A.U., Parkes A.S. // Nature. 1949. V. 164. № 10. P. 666. https://doi.org/10.1038/164666a0
  10. 10. Rasmussen D.H., Mackenzie A.P. // Nature. 1968. V. 220. № 12. P. 1315. https://doi.org/10.1038/2201315a0
  11. 11. Кириленко И.А. Водно-электролитные стеклообразующие системы / М.: Красанд, 2016.
  12. 12. Hagg G.I. // J. Chem. Phys. 1935. № 3. P. 42. https://doi.org/10.1063/1.1749624
  13. 13. Кобеко П.П. Аморфные вещества: Физико-химические свойства простых и высокомолекулярных аморфных тел. М. - Л.: изд-во АН СССР. 1952.
  14. 14. Rawson H. Inorganic Glass-forming Systems / London N-Y: Acad. Press. 1967.
  15. 15. Tammann. G. Der Glaszustand. Leipzig: Verlag Leop. Voss. 1933. https://doi.org/10.1002/ange.19330463312
  16. 16. Аппен А.А. Химия стекла / Л.: Химия. 1974. С. 352.
  17. 17. Дембовский С.А., Чечеткина Е.А. Стеклообразование / М.: Наука. 1990. С. 277.
  18. 18. Kirilenko I.A., Tarakanova E.G., Mayorov A.V. et. al. // J. Non-Crystal. Solids. 2022. V. 594. 121825. https://doi.org/10.1016/j.jnoncrysol.2022.121825.
  19. 19. Tarakanova E.G., Kirilenko I.A. // J. Non-Crystal. Solids. 2021. V. 573. 121130. https://doi.org/10.1016/j.jnoncrysol.2021.121130
  20. 20. Майоров В.Д., Тараканова Е.Г., Майоров А.В., Кислина И.С. // Журн. структур. химии. 2022. Т. 63. № 10. 99312. https://doi.org/10.26902/JSC_id99312
  21. 21. Tarakanova E.G., Yukhnevich G.V., Kislina I.S., Maiorov V.D. // Phys. Wave Phenom. 2020. V. 28. № 2. P. 168. https://doi.org/10.3103/S1541308X2002017X
  22. 22. Kirilenko I.A. // Russ. J. Inorg. Chem. 2017. V. 62 № 14. P. 1819. https://doi.org/10.1134/S0036023617140042
  23. 23. Кириленко И.А., Демина Л.И., Данилов В.П. // Журн. неорган. химии. 2019. Т. 64. № 10. С. 1089. https://doi.org/10.1134/S0044457X19100076
  24. 24. Kirilenko I.A. // Russ. J. Inorg. Chem. 2018. V. 63. № 13. P. 1728. https://doi.org/10.1134/S0036023618130053
  25. 25. Кириленко И.А., Демина Л.И. // Журн. неорган. химии. 2018. Т. 63. № 10. С. 1349. https://doi.org/10.1134/S0044457X18100100
  26. 26. Панасюк Г.П., Лященко А.К., Азарова Л.А. и др. // Журн. неорган. химии. 2018. Т. 63. № 6. С. 796. https://doi.org/10.7868/S0044457X18060211
  27. 27. Angell C.A., Sare E.J. // J. Chem. Phys. 1970. V. 52. № 3. P. 1058. https://doi.org/10.1063/1.1673099
  28. 28. Angell С.A., Bressel R.D. // J. Phys. Chem. 1972. V. 76. № 22. P. 3244. https://doi.org/10.1021/j100666a023
  29. 29. Angell C.A., Tucker J.C. // J. Phys. Chem. 1980. V. 84. № 3. P. 268. https://doi.org/10.1021/j100440a009
  30. 30. Angell C.A. // Chem. Rev. 2002. V. 102. № 8. P. 2627. https://doi.org/10.1021/cr000689q
  31. 31. Hodge I.M., Angell C.A. // J. Non-Crystal. Solids. 1976. V. 20. № 2. P. 299. https://doi.org/10.1016/0022-3093 (76)90138-1
  32. 32. Кириленко И.А., Демина Л.И., Данилов В.П. // Журн. неорган. химии. 2022. V. 67. № 11. С. 1554. https://doi.org/10.31857/S0044457X2270012X
  33. 33. Кириленко И.А., Винокуров А.А., Данилов В.П. и др. // Журн. неорган. химии. 2020. Т. 65. № 7. С. 903. https://doi.org/10.31857/S0044457X20060082
  34. 34. Saito K., Kinoshita Y., Kanno H. // Fertil. Steril. 1996. V. 65. № 6. P. 1210.
  35. 35. Abeyrathne N.S., Lee H.Y., Ahn D.U. // Poultry Science 2013. V. 92. № 12. P. 3292.
  36. 36. Frisch M.J., Trucks G.W., Schlegel H.B. et. al. Gaussian 09. Revision A.02 / Gaussian, Inc. Wallingford CT. 2009.
  37. 37. Frisch M.J., Trucks G.W., Schlegel H.B. et. al. Gaussian 16, Revision С.01 / Gaussian, Inc., Wallingford CT. 2019.
  38. 38. Silverstein K.A.T., Haymet A.D.J., Dill K.A. // J. Am. Chem. Soc. 2000. V. 122. № 33. P. 8037. https://doi.org/10.1021/ja000459t
  39. 39. Бизунок С.Н., Свентицкий Е.Н. Вода в биологических системах и их компонентах / Л.: Изд-во ЛГУ. 1983.
  40. 40. Жмакин А.И. // Успехи физ. наук. 2008. Т. 178. № 3. С. 243. https://doi.org/10.3367/UFNr.0178.200803b.0243
  41. 41. Zhmakin A.I. Fundamentals of cryobiology / Berlin, Heidelberg: Springer-Verlag. 2009.
  42. 42. Levy Y., Onuchic J.N. // Annual Rev. Biophys. 2006. V. 35. P. 389. https://doi.org/10.1146/annurev.biophys.35.040405.102134
  43. 43. Mazur P. // Science. 1970. V. 168. № 3934. P. 939. https://doi.org/10.1126/science.168.3934.939
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library