RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Calcium silicate based material as a filler for paint coatings

PII
S0044457X25030199-1
DOI
10.31857/S0044457X25030199
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 3
Pages
475-482
Abstract
Paint coatings with optimal performance properties are an important element in the safety and efficiency of marine and river vessels, as well as other objects exploited in the aquatic environment. In this work for modification of paint and varnish coatings we used a material based on calcium hydrosilicate, obtained by hydrothermal method from technogenic waste in the form of borogypsum. The synthesis product with specific surface 155.2 m2/g and density 3.1 g/cm3 is characterized by the presence of phases of calcium sulfate, tobermorite and xonotlite and consists of mainly from needle particles. The influence of calcium hydrosilicate, partially replacing calcium carbonate, on the properties of paint coatings based on acrylic copolymer has been studied. Physical and mechanical properties, antifouling effect, water absorption and erosion rate of paint coatings were studied.The results of the study showed the efficiency of calcium silicate use to improve the physical and mechanical properties of coatings: an increase in strength by 1.5 times was found. At the same time, the addition of calcium hydrosilicate at partial replacement of calcium carbonate does not decrease the antifouling effect.
Keywords
отходы игольчатый силикат акриловый сополимер противообрастающий эффект прочность
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Liang H., Shi X., Li Y. // Coatings. 2024. V. 14. P. 1487. https://doi.org/10.3390/coatings14121487
  2. 2. Yan Z., Zhou D., Zhang Q. et al. // Desalination. 2023. V. 553. P. 116504. https://doi.org/10.1016/j.desal.2023.116504
  3. 3. Perera D.Y. // Prog. Org. Coat. 2004. V. 50. P. 247. https://doi.org/10.1016/j.porgcoat.2004.03.002
  4. 4. Коврижкина Н.А., Кузнецова В.А., Силаева А.А. и др. // Авиац. матер. технол. 2019. №4. С. 41.
  5. 5. Кузнецова В.А., Е.А. Тимошина, Г.Г. Шаповалов и др. // Труды ВИАМ. 2023. № 10. С.132–144.
  6. 6. Montoya L.F., Muñoz -Rivera I., Jaramillo A.F. et al. // Mater. Chem. Phys. 2025. V. 329. P. 130056. https://doi.org/10.1016/j.matchemphys.2024.130056
  7. 7. Wernera R., Krysztafkiewicza A., Dec A. et al. // Dyes and Pigments. 2001. V. 50. P. 41. https://doi.org/10.1016/S0143-7208 (01)00029-8
  8. 8. Buyondo K.A., Kasedde H., Kirabira J.B. // Case Stud. Chem. Environ. Eng. 2022. V. 6. P. 100244. https://doi.org/10.1016/j.cscee.2022.100244
  9. 9. Deng Y., Song G.-L., Zhang T. et al. // Compos. Sci. Technol. 2022. V. 221. P. 109312. https://doi.org/10.1016/j.compscitech.2022.109312
  10. 10. Pourhashema S., Seif A., Saba F. et al. // J. Mater. Sci. Technol. 2022. V. 118. P. 73. https://doi.org/10.1016/j.jmst.2021.11.061
  11. 11. Zhevtun I.G., Mikhailov M.M., Gordienko P.S. et al. // Opt. Mater. 2024. V. 157. P. 116040. https://doi.org/10.1016/j.optmat.2024.116040
  12. 12. Karakaş F., Ҫelik M.S. // Prog. Org. Coat. 2012. V. 74. P. 555. https://doi.org/10.1016/j.porgcoat.2012.02.002
  13. 13. Abdalla J.A., Thomas B.S., Hawileh R.A. et al. // Clean. Mater. 2022. V. 4. P. 100061. https://doi.org/10.1016/j.clema.2022.100061
  14. 14. Guerra-Garcés J., García-Negrete C.A., Pastor-Sierra K. et al. // Mater. Today Sustain. 2022. V. 19. P. 100166. https://doi.org/10.1016/j.mtsust.2022.100166
  15. 15. Grodzka J., Krysztafkiewicz A., Jesionowski T. // Adv. Powder Technol. 2005. V. 16. P. 181. https://doi.org/10.1163/1568552053621678
  16. 16. Somtürk S.M., Emek İ.Y., Senler S. et al. // Prog. Org. Coat. 2016. V. 93. P. 34. https://doi.org/10.1016/j.porgcoat.2015.12.014.
  17. 17. Wolfe M.A. // Paints Coat. Ind. 2012. V. 28. https://www.pcimag.com/articles/96381-calcium-metasilicate-maintains-performance--minimizes-cost
  18. 18. Karle A.H., Tungikar V.B. // Mater. Today: Proc. 2021. V. 45. P. 5153. https://doi.org/10.1016/j.matpr.2021.01.688
  19. 19. Skachkov V.M., Pasechnik L.A., Medyankina I.S. // Russ. J. Inorg. Chem. 2023. V. 68. № 11. P. 1532. https://doi.org/10.1134/s0036023623602040
  20. 20. Папынов Е.К., Ярусова С.Б. Функциональные керамические и композитные материалы практического назначения: синтез, свойства, применение: монография / Под науч. ред. акад. РАН В.И. Сергиенко; Владивосток: Изд-во ВВГУ, 2022. 240 с. https://doi.org/10/12466/0677-0-2022
  21. 21. Данилова С.Н., Харченко У.В., Ярусова С.Б. и др. // Керамика и композиционные материалы: тез. докл. X Всероссийской научной конференции. г. Сыктывкар, 26-27 окт. 2021 г. ФИЦ Коми научный центр УрО РАН. С. 88.
  22. 22. Yarusova S.B., Gordienko P.S., Kozin A.V. et al. // IOP Conf. Series: Mater. Sci. Eng. 2018. V. 347. P. 012041. https://doi.org/10.1088/1757-899X/347/1/012041
  23. 23. Gordienko P.S., Yarusova S.B., Buravlev I.Yu. et al. // Russ. J. Phys. Chem. A. 2021. V. 95. P. 38. https://doi.org/10.1134/S003602442101009X
  24. 24. Frydenberg T., Weinell C.E., Dam-Johansen K. et al. // J. Coat. Technol. Res. 2023. V. 20. P. 935. https://doi.org/10.1007/s11998-022-00713-y
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library