RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Vermiculite-based sorbents modified with compounds of various natures

PII
S0044457X25030187-1
DOI
10.31857/S0044457X25030187
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 3
Pages
468-474
Abstract
The aim of this study was to investigate the effect of organic and inorganic modifiers on the internal structure and surface properties of vermiculite from the Kovdor deposit in an alkaline medium. Vermiculite from the Kovdor deposit was treated with modifiers of various natures in an alkaline medium (sodium hydroxide, sodium stearate) with the sequential introduction of copper chloride and potassium hexacyanoferrate (II) solutions. It was shown that the introduction of stearate ion, according to X-ray phase analysis, leads to an increase in the interplanar distance compared to the original vermiculite. At the same time, an increase in the volume of the coherent scattering region indicates an increase in the degree of crystallinity and significant interaction of the modifier with the surface. Further addition of potassium ferricyanide leads to an even greater increase in the interplanar distance due to the bulk hexacyanoferrate ion, but a sharp drop in the volume of the coherent scattering region indicates the exfoliation process of the layered silicate, which leads to a decrease in the surface area due to an increase in amorphism.
Keywords
вермикулит стеарат натрия гексацианоферрат(II)-ион область когерентного рассеяния
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Шапкин Н.П., Ермак И.М., Разов В.И. и др. // Журн. неорган. химии. 2014. Т. 59. № 6. С. 766. https://doi.org/
  2. 2. Шапкин Н.П., Разов В.И., Майоров В.Ю. и др. // Журн. неорган. химии. 2014. Т. 59. № 6. С. 1519. https://doi.org/
  3. 3. Ghorbanian S.A., Bagheri Renani S., Fatoorehchi H. et al. // Fibers Polym. 2024. V. 25. P. 1219. https://doi.org/10.1007/s12221-024-00470-2
  4. 4. Pishdadi-Aghdarreh F., Norouzbeigi R., Velayi E. // Int. J. Environ. Sci. Technol. 2024. https://doi.org/10.1007/s13762-024-06212-4
  5. 5. Dong Y., Zhang P., Lin H.A. // Water Air Soil Pollut. 2022. V. 233. P. 532. https://doi.org/10.1007/s11270-022-05987-x
  6. 6. Wang Q., Zhang J., Wang A. // Appl. Surf. Sci. 2013. V. 287. P. 54. https://doi.org/10.1016/j.apsusc.2013.09.057
  7. 7. de Queiroga L.N.F., Soares P.K., Fonseca M.G. et al. // Appl. Clay Sci. 2016. V. 126. P. 113. https://doi.org/10.1016/j.clay.2016.02.031
  8. 8. Тарасевич Ю.И., Овчаренко Ф.Д. // Адсорбция на глинистых минералах. Киев: Наук. думка, 1975.
  9. 9. Brigatti M.F., Galan E., Theng B.K.G. // Develop. Clay Sci. 2006. V. 1. P. 19. https://doi.org/10.1016/S1572-4352 (05)01002-0
  10. 10. Ali I., Asim M., T. A. Khan // J. Environ. Manag. 2012. V. 113. P. 170. https://doi.org/10.1016/j.jenvman.2012.08.028
  11. 11. Kwon S., Kim Y., Roh Y. // J. Hazar. Mater. 2021. V. 401. 123319. https://doi.org/10.1016/j.jhazmat.2020.123319
  12. 12. Stawiński W., Węgrzyn A., Freitas O. et al. // Sci. Total Environ. 2017. V. 576. P. 398. https://doi.org/10.1016/j.scitotenv.2016.10.120
  13. 13. Stawiński W., Węgrzyn A., Dańko T. et al. // Chemosphere. 2017. V. 173. P. 107. https://doi.org/10.1016/j.chemosphere.2017.01.039
  14. 14. Pishdadi-Aghdarreh F., Norouzbeigi R., Velayi E. // J. Environ. Chem. Eng. 2023. V. 11. № 5. 110405. https://doi.org/10.1016/j.jece.2023.110405
  15. 15. Bel’chinskaya L.I., Khokhlov V.Yu., Lu T.Y. et al. // Protect. Met. Phys. Chem. Surf. 2012. V. 48. № 3. P. 322. https://doi.org/10.1134/S2070205112030033
  16. 16. Везенцевa А.И., Воловичева Н.А., Королькова С.В. и др. // Журн. физ. химии. 2022. Т. 96. № 2. С. 259. https://doi.org/10.31857/S0044453722010265
  17. 17. Разговоров П.Б., Игнатьев А.А., Абрамов М.А., Нагорнов Р.С. // Умные композиты в строительстве. 2020. Т. 1. №1. С. 10. https://doi.org/10.52957/27821919_2020_1_10
  18. 18. Kovalevski V.V., Kochneva I.V., Rozhkova V.S. // Inorg. Mater. 2023. V. 59. 736. https://doi.org/10.1134/S0020168523070099
  19. 19. Тучкова А.И., Тюпина Е.А., Рахимов М.Г. // Успехи в химии и химической технологии. 2012. Т. 26. № 6. С. 92.
  20. 20. Холомейдик А.Н., Панасенко А.Е. // Журн. неорган. химии. 2024. Т. 69. № 2. С. 238. https://doi.org/10.31857/S0044457X24020113
  21. 21. Холомейдик А.Н., Панасенко А.Е. // Журн. неорган. химии. 2022. Т. 67. № 9. С. 1325. https://doi.org/10.31857/S0044457X22090069
  22. 22. Хальченко И.Г., Шапкин Н.П., Свистунова И.В., Токарь Э.А. // Бутлеровские сообщения. 2015. Т. 41. № 1. С.74.
  23. 23. Miller R.L., Boyer R.F. // J. of Polym. Scien. Part A-2. Polymer Physics. 1984. V. 22. № 12. P. 2043.
  24. 24. Шапкин Н.П., Хальченко И.Г., Маслова Н.В. и др. // Изв. Акад. наук. Сер. хим. 2020. № 7. С. 1385.
  25. 25. Шапкин Н.П., Хальченко И.Г., Боярникова В.А. и др. // Бутлеровские сообщения. 2024. Т. 77. № 2. С. 102.
  26. 26. Shapkin N.P., Pervakov K.A., Razov V.I. // Silicon. 2024. V. 16. № 12. P. 5161. https://doi.org/10.1007/s12633-024-03068-8
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library