RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Metal-ceramic composites with permanent connection fabrication using spark plasma sintering

PII
S0044457X25030173-1
DOI
10.31857/S0044457X25030173
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 3
Pages
455-467
Abstract
The article presents a study on obtaining silicon carbide ceramics, including those with a reinforcing additive (10 wt. % SiCw whiskers), and metal-ceramic composites with a permanent connection based on this ceramics and heat-resistant alloy ZhS6U-VI using spark plasma sintering technology. The dynamics of SiC powder consolidation under SPS conditions, as well as the phase composition, structure, density and microhardness of the formed samples of SiC ceramics and its reinforced form SiC/SiCw are studied. A method for obtaining metal-ceramic composites with a permanent connection based on the obtained samples of ceramics and heat-resistant alloy ZhS6U-VI under SPS conditions is implemented. SEM and EDS methods showed that obtaining composites with defect-free boundaries of permanently connected layers of ceramics and heat-resistant alloy is achieved by forming intermediate layers of Ti-Ag and Ni-Ag binders, as well as a damper layer of Mo to compensate for a significant difference in CTLE’s values. The structural integrity of the composites was studied using electron microscopy and X-ray microtomography. As a result, it was found that the composition of SiC ceramics without the addition of SiCw whiskers is more structurally homogeneous and less brittle for obtaining a SiC—ZhS6U-VI composite with a permanent connection using the SPS technology.
Keywords
карбидокремниевая керамика SiC-вискеры жаропрочный сплав ФГМ рентгеновская микротомография диффузионное соединение ИПС
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Shcherban N.D. // J. Ind. Eng. Chem. 2017. V. 50. № 2016. P. 15. https://doi.org/10.1016/j.jiec.2017.02.002
  2. 2. Eom J.H., Kim Y.W., Raju S. // J. Asian Ceram. Soc. 2013. V. 1. № 3. P. 220. https://doi.org/10.1016/j.jascer.2013.07.003
  3. 3. Nascimento R.M. do, Martinelli A.E., Buschinelli A.J.A. // Cerâmica. 2003. V. 49. № 312. P. 178. https://doi.org/10.1590/s0366-69132003000400002
  4. 4. Zhang Y., Chen Y.K., Yu D.S. et al. // J. Mater. Res. Technol. 2020. V. 9. № 6. P. 16214. https://doi.org/10.1016/j.jmrt.2020.11.088
  5. 5. Orru` R., Licheri R., Locci A.M. et al. // Mater. Sci. Eng. R 2009. V. 63. № 4–6. P. 127. https://doi.org/10.1016/j.mser.2008.09.003
  6. 6. Cavaliere P. // Spark Plasma Sintering of Materials, Springer International Publishing, Cham, 2019. https://doi.org/10.1007/978-3-030-05327-7
  7. 7. Liu W., Naka M. // Scr. Mater. 2003. V. 48. № 9. P. 1225. https://doi.org/10.1016/S1359-6462 (03)00074-5
  8. 8. Uday M.B., Ahmad-Fauzi M.N., Noor A.M. et al. // Current Issues and Problems in the Joining of Ceramic to Metal // Join. Technol., InTech. 2016. P. 159. https://doi.org/10.5772/64524
  9. 9. Naveen Kumar N., Janaki Ram G.D., Bhattacharya S.S. // Trans. Indian Inst. Met. 2019. V. 72. № 7. P. 1837. https://doi.org/10.1007/s12666-019-01662-8
  10. 10. Ваганова М.Л., Сорокин О.Ю., Осин И.В. // Авиационные материалы и технологии 2017. С. 306. https://doi.org/10.18577/2071-9140-2017-0-s-306-317
  11. 11. Watanabe M., Yokoyama K., Imai Y. et al. // Ceram. Int. 2022. V. 48. № 6. P. 8706. https://doi.org/10.1016/j.ceramint.2021.12.004
  12. 12. Vidyuk T.M., Dudina D.V., Esikov M.A. et al. // Mater. Today Proc. 2019. V. 25. P. 377. https://doi.org/10.1016/j.matpr.2019.12.095
  13. 13. Chen Y.J., Li F.X., Liu Y.C. et al. // J. Mater. Res. Technol. 2024. V. 29. P. 3063. https://doi.org/10.1016/j.jmrt.2024.02.030
  14. 14. Bahraminasab M., Ghaffari S., Eslami-Shahed H. // J. Mech. Behav. Biomed. Mater. 2017. V. 72. P. 82. https://doi.org/10.1016/j.jmbbm.2017.04.024
  15. 15. Чуклинов С.В., Сергиенко В.И., Папынов Е.К. и др. // Журн. неорган. химии. 2023. Т. 68. № 1. С. 115. https://doi.org/10.31857/S0044457X22601237
  16. 16. Папынов Е.К., Чуклинов С.В., Шичалин О.О. и др. // Авиационные двигатели. 2024. № (3)24. С. 3.
  17. 17. Zhang Z.H., Wang F.C., Luo J. et al. // Mater. Sci. Eng. A 2010. V. 527. № 7–8. P. 2099. https://doi.org/10.1016/j.msea.2009.12.027
  18. 18. Житнюк С.В., Сорокин О.Ю., Журавлева П.Л. // Тр. ВИАМ 2020. № 2. С. 50. https://doi.org/10.18577/2307-6046-2020-0-2-50-59
  19. 19. Воронов В.А., Лебедева Ю.Е., Чайникова А.С. и др. // Неорган. матер. 2022. Т. 58. № 1. С. 110. https://doi.org/10.31857/s0002337x22010134
  20. 20. Simonenko E.P., Simonenko N.P., Papynov E.K. et al. // J. Sol-Gel Sci. Technol. 2017. V. 82. № 3. P. 748. https://doi.org/10.1007/s10971-017-4367-2
  21. 21. Shapkin N.P., Papynov E.K., Shichalin O.O. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 5. P. 629. https://doi.org/10.1134/S0036023621050168
  22. 22. Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 4. https://doi.org/10.1134/S0036023623600272
  23. 23. Папынов Е.К., Шичалин О.О., Чуклинов С.В. et al. // Авиационные двигатели. 2024. № 1. С. 11.
  24. 24. Martinsen K., Hu S.J., Carlson B.E. // CIRP Ann. 2015. V. 64. № 2. P. 679. https://doi.org/10.1016/j.cirp.2015.05.006
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library