- Код статьи
- S0044457X25030093-1
- DOI
- 10.31857/S0044457X25030093
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 70 / Номер выпуска 3
- Страницы
- 377-385
- Аннотация
- В последние годы с ростом популярности электромобилей и других устройств, работающих на батареях, наблюдается значительный рост спроса на литий-ионные аккумуляторы (ЛИА). Эти аккумуляторы стали основным источником энергии для большинства портативных устройств, а также для электрических автомобилей. Одним из таких автомобилей является Nissan Leaf. Однако с увеличением производства и потребления ЛИА возникает не только вопрос обеспечения их эффективного производства, но и необходимость в их экологически безопасной переработке. Процесс переработки отработанных ЛИА включает в себя извлечение ценных компонентов, таких как литий, кобальт, никель и марганец. Эффективная переработка катодных материалов становится особенно важной, так как это позволяет не только повторно использовать эти металлы в производстве новых аккумуляторов, но и снижает потребность в добыче необходимых ресурсов. Одним из элементов, который может быть выделен в процессе переработки ЛИА, является марганец (Mn). Этот металл не только играет важную роль в производстве аккумуляторов, но и может стать основой для синтеза новых материалов, таких как MAX-фаза Mn3AlC. Марганцевые MAX-фазы представляют собой класс двумерных материалов, которые привлекают все большее внимание исследователей благодаря своим уникальным свойствам. Таким образом, переработка литий-ионных аккумуляторов не только решает проблему утилизации отходов, но и создает возможности для разработки новых материалов.
- Ключевые слова
- литий-ионный аккумулятор вторичная переработка аккумуляторов оксид марганца MAX-фаза
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 15
Библиография
- 1. Zhao P., Li Y., Wang X. et al. // Separation and Purification Technology. 2025. V. 357. P. 129988. https://doi.org/10.1016/j.seppur.2024.129988.
- 2. Fan Х., Song С., Lu X. et al. // J. Alloys. Compd. 2021. V. 863. P. 158775. https://doi.org/10.1016/j.jallcom.2021.158775
- 3. Li P., Luo S., Zhang L. et al. // J. Energy Chem. 2024. V. 89. P. 144. https://doi.org/10.1016/j.jechem.2023.10.012
- 4. Golmohammadzadeh R., Faraji F., Jong B. et al. // Renew. Sustain. Energy Rev. 2022. V. 159. Р. 112202. https://doi.org/10.1016/j.rser.2022.112202
- 5. Xu C., Dai Q., Gaines L. et al. // Commun. Mater. 2020. V. 1. Р. 99. https://doi.org/10.1038/s43246-020-00095-x
- 6. Wang J., Liang Z., Zhao Y. et al. // Energy S. 2022. V. 45. P. 768. https://doi.org/10.1016/j.ensm.2021.12.013
- 7. Lin J., Zhang X., Fan E. // Energ. Environ. Sci. 2023. V. 16. P. 745. https://doi.org/10.1039/d2ee03257k
- 8. Zhang B., Chen S., Yang L. et al. // ACS Nano. 2024. V. 18. P. 23773. https://doi.org/10.1021/acsnano.4c08968
- 9. Medvedeva A.E., Pechen L.S., Makhonina E.V. et al. // Russ. J. Inorg. Chem. 2019. V. 64. P. 829. https://doi.org/10.1134/S003602361907012X
- 10. Xing C., Meng Y., Linfeng Fei F. // Energy Storage Materials. 2024. V. 71. P. 103636. https://doi.org/10.1016/j.ensm.2024.103636
- 11. Qu X., Zhang B., Zhao J. et al. // Green Chem. 2023. V. 25. P. 29925. https://doi.org/10.1039/d2gc04620b
- 12. Belmesov A., Glukh A., Kayumo R. et al. // Coatings. 2023. V. 13. P. 2075. https://doi.org/10.3390/coatings13122075
- 13. Belmesov A., Glukhov A., Tsvetkov M. et al. // J. Comp. Cos. Sci. V. 7. P.454. https://doi.org/10.3390/jcs7110454
- 14. Buravlev I., Vornovskikh A., Shichalin O. et al. // Ceram. Int. V. 50. P. 14445. https://doi.org/10.1016/j.ceramint.2024.01.357
- 15. Wang J.X., Ma J., Zhuang Z.F. et al. // Chem. Rev. 2024. V. 124. P. 2839. https://doi.org/10.1021/acs.chemrev.3c00884
- 16. Zhang X., Li L., Fan E. et al. // Chem. Soc. Rev. 2018. V. 47. P. 7239. https://doi.org/10.1039/c8cs00297e
- 17. Yu W., Guo Y., Shang Z. et al. // eTransportation. 2022. V. 11. P. 100155. https://doi.org/10.1016/j.etran.2022.100155
- 18. Gao Z., Huang M., Yang L. et al. // J. Energy Chem.. 2023. V. 78. P. 253. https://doi.org/10.1016/j.jechem.2022.11.061
- 19. Shichalin O.O., Ivanov N.P., Seroshtan A.I. et al. // Ceramics International. 2024. V. 50. № 24. P. 53120. https://doi.org/10.1016/j.ceramint.2024.10.161
- 20. Mahmood A., Gill R., Raffi M. et al. // Diamond Related Mater. 2023. V. 303. P. 110387. https://doi.org/10.1016/j.diamond.2023.110387
- 21. Kalmár J., Karlický F. // Phys. Chem. Chem. Phys. 2024. V. 29. https://doi.org/10.1039/D4CP02264E
- 22. Eklund P., Rosen J., Persson P. // J. Phys. D: Appl. Phys. 2017. P. 113001. https://doi.org/10.1088/1361-6463/aa57bc
- 23. Jiahe P., Xingzhu C., Wee-Jun O. et al. // Chem. 2019. V. 5. № 1. P. 18. https://doi.org/10.1016/j.chempr.2018.08.037
- 24. Yang X., Zhang Y., Meng Q. et al. // RSC Adv. 2021. V. 11. P. 268. https://doi.org/10.1039/d0ra09297e
- 25. Eraky M.S., El-Sadek M., Shenouda A.Y. et al. // Monatshefte fur Chemie – Chem. Monthly. 2024. V. 155. P. 289. https://doi.org/10.1007/s00706-024-03173-9