RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Synthesis of micro- and mesoporous aluminosilicates in the presence of polyethylene glycol

PII
S0044457X25030037-1
DOI
10.31857/S0044457X25030037
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 3
Pages
315-326
Abstract
Natural and synthetic aluminosilicates currently have a wide range of applications. Silicon-containing wastes of rice production are of great interest as a source of raw materials for their production. The purpose of this work is to synthesize micro- and mesoporous materials from rice husk by templat method using PEG-6000. The obtained samples were investigated by differential thermal analysis and IR spectroscopy, which showed the introduction of PEG into the structure of potassium aluminosilicate during sol-gel synthesis. The specific surface area of the samples and pore size distribution were determined by low-temperature nitrogen adsorption, according to which it was found that the pore radius increased from 100 to 200 Å during sol-gel synthesis when the PEG concentration was changed from 5 to 20 mmol/L. The study of the surface of the samples by scanning electron microscopy showed that the introduction of templat changes their surface morphology and promotes structuring.
Keywords
темплат рисовая шелуха золь-гель синтез структурные характеристики
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Hong-Tao L., Jiu-Jiang W., Fang-Ming X. et al. // Pet. Sci. 2023. V. 20. P. 1903. https://doi.org/10.1016/j.petsci.2022.11.028
  2. 2. Nugrahaa R.E., Purnomo H., Aziz A. et al. // S. Afr. J. Chem. Eng. 2024. V. 49. P. 122. https://doi.org/10.1016/j.sajce.2024.04.009
  3. 3. Yanga H., Han T., Yang W. et al. // J. Anal. Appl. Pyrolysis. 2022. V. 165. P. 105536. https://doi.org/10.1016/j.jaap.2022.105536
  4. 4. Singh B.K., Bhadauria J., Tomar R. et al. // Desalination. 2022. V. 268. P. 189. https://doi.org/10.1016/j.desal.2010.10.022
  5. 5. Singh B.K., Tomar R., Kumar S. et al. // J. Hazard. Mater. 2010. V. 178. P. 771. https://doi.org/10.1016/j.jhazmat.2010.02.007
  6. 6. Bhadoria R., Singh B.K., Tomar R. // Desalination. 2010. V. 254. P. 192. https://doi.org/10.1016/j.desal.2009.11.016
  7. 7. Mahinroosta M., Moattari R.M., Allahverdi A. et al. // Circ. Econ. 2024. P. 100100. https://doi.org/10.1016/j.cec.2024.100100
  8. 8. Simancas R., Takemura M., Chen C.-T. // J. Non-Cryst. Solids. 2023. V. 605. P. 122172. https://doi.org/10.1016/j.jnoncrysol.2023.122172
  9. 9. Шульц М.М. // Силикаты в природе и практике человека. 1997. С. 197.
  10. 10. Sembiringa S., Simanjuntak W., Manurung P. et al. // Ceram. Int. 2014. V. 40. P. 7067. http://dx.doi.org/10.1016/j.ceramint.2013.12.038
  11. 11. Darsanasiria A.G.N.D., Matalkahb F., Ramli S. et al. // J. Build. Eng. 2018. V. 19. P. 36. https://doi.org/10.1016/j.jobe.2018.04.020
  12. 12. Simanjuntak W., Sembiring S., Manurung P. et al. // Ceram. Int. 2013. V. 39. P. 9369. http://dx.doi.org/10.1016/j.ceramint.2013.04.112
  13. 13. Филиппова Е.О., Шафигулин Р.В., Виноградов К.Ю. и др. // Сорб. и хром. процессы. 2020. Т. 20. C. 696.
  14. 14. Tretyakov Yu.D., Gudilin E.A. // Int. Sci. J. Alt. Energy Ecol. 2009. V. 6. № 74. C. 39.
  15. 15. Глотов А.П., Ставицкая А.В., Новиков А.А. и др. // XI междунар. конф., посвященная 50-летию Института химии нефти СО РАН. Томск: Изд-во ИОА СО РАН. 2020. 65 с.
  16. 16. Gautier C., Abdoul-Aribi N., Roux C. et al. // Colloids Surf. B: Biointerfaces. 2008. V. 65. № 1. P. 140. https://doi.org/10.1016/j.colsurfb.2008.03.005
  17. 17. Shchipunov Y., Shipunova N. // Colloids Surf. B: Biointerfaces. 2008. V. 63. № 1. P. 7. http://doi.org/10.1016/j.colsurfb.2007.10.022
  18. 18. Beck J.S., Vartuli J.C., Roth W.J. et al. // J. Am. Chem. Soc. 1992. V. 114. № 27. P. 10834. http://doi.org/10.1021/ja00053a020
  19. 19. Casiraghi A., Selmin F., Minghetti P. et al. Nonionic Surfactants: Polyethylene Glycol (PEG) Ethers and Fatty Acid Esters as Penetration Enhancers. In: Dragicevic, N., Maibach, H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg, 2015. https://doi.org/10.1007/978-3-662-47039-8_15
  20. 20. Guo W., Luo G.S., Wang Y.J. et al. // J. Colloid Interface Sci. 2004. V. 207. № 2. P. 400. https://doi.org/10.1016/j.jcis.2003.08.056 - 20
  21. 21. Яцковская О.В., Бакланова О.Н., Гуляева Т.И. и др. // Физикохимия поверхности и защита материалов. 2013. Т. 49. № 2. С. 223.
  22. 22. Chen G., Jiang L., Wang L. et al. // Microporous Mesoporous Mater. 2010. V. 134. № 1-3. P. 189. http://doi.org/10.1016/j.micromeso.2010.05.025
  23. 23. Xu F., Dong M., Gou W. et al. // Microporous Mesoporous Mater. 2012. V. 163. P. 192. http://doi.org/10.1016/j.micromeso.2012.07.030
  24. 24. Li D., Zhu X. // ACS Mater. Lett. 2011. V. 11. P. 1528. http://doi.org/10.1016/j.matlet.2011.03.011
  25. 25. Панасенко А.Е., Борисова П.Д., Арефьева О.Д. и др. // Химия растительного сырья. 2019. № 3. С. 291. http://doi.org/10.14258/jcprm.2019034278
  26. 26. Иконникова К.В., Иконникова Л.Ф., Минакова Т.С. и др. Теория и практика рН-метрического определения кислотно-основных свойств поверхности твердых тел: учебное пособие. Томск: Изд-во Томского политехн. ун-та, 2011.
  27. 27. Карнаухов А.П. Адсорбция. Текстура дисперсных и пористых материалов / Новосибирск: Издательство Сибирского отделения РАН, 1989.
  28. 28. Грег С., Синг К. Адсорбция, удельная поверхность, пористость. Пер. с англ. / М.: Мир, 1984.
  29. 29. Айлер Р.К. Химия кремнезема: растворимость, полимеризация, коллоидные и поверхностные свойства, биохимия. Пер. с англ. М.: Мир, 1982.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library