RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

In vitro study of antiviral properties of compounds based on tetrahydropyran derivative of closo-decaborate anion with amino acid ester residues against influenza virus A/IIV-Orenburg/83/2012(H1N1)pdm09

PII
S0044457X25020093-1
DOI
10.31857/S0044457X25020093
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 2
Pages
232-243
Abstract
Based on the substituted derivative of the decahydro-closo-decaborate anion (Ph4P)2[B10H9O(CH2)5COOH] obtained by opening the tetrahydropyran substituent in the anion [B10H9O(CH2)5], a series of compounds Na2[B10H9O(CH2)6C(O)X], where X = Trp-OMe (1), His-OMe (2), Met-OMe (3), Pld-OMe (4), containing various amino acid substituents attached to the pendant carboxyl group, were synthesized. The compounds were isolated as sodium salts. The residues of L-tryptophan (Na21) and L-histidine (Na22) contained aromatic heterocyclic groups indole and imidazole, respectively, as a side group. Compounds Na23 and Na24 contained substituted alkanes as a side group: L-methionine (Na23) contained a methyl ethyl sulfide group, and compound Na24 contained the residue of an aliphatic synthetic amino acid in which the side group was represented by γ-butyrolactam (pyrrolidin-2-one). Compounds Na21 and Na22 were found to exhibit dose-dependent antiviral activity against the influenza virus strain A/IIV-Orenburg/83/2012(H1N1)pdm09 in vitro. IC50 for compound Na21 was 5.0 μg/ml, and for compound Na22 it was found to be 10.0 μg/ml. Molecular docking of the M2 protein pore and compounds Na21 and Na22 was performed. It was found that the most probable arrangement of molecules in the pore of the M2 channel is associated with the location of the heterocycle inside the pore of the M2 channel in the region of the residues His37–Trp41, and for the compound Na21 this an arrangement is more favorable than for Na22, which explains some difference in the concentrations of suppression of viral reproduction for Na21 and Na22. For compounds Na23and Na24, antiviral activity was not detected.
Keywords
противовирусная активность виропорины аминокислоты полиэдрические анионы бора клозо-декаборатный анион тетрагидропиран раскрытие циклических заместителей
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Reid A.H., Taubenberger J.K., Fanning T.G. // Microbes Infect. 2001. V. 3. P. 81. https://doi.org/10.1016/s1286-4579 (00)01351-4
  2. 2. Garten R.J., Davis C.T., Russell C.A., Shu B. // Science. 2009. V. 325. P. 197. https://doi.org/10.1126/science.1176225
  3. 3. WHO. Avian influenza in humans. 2012. http://www.who.int/csr/disease/avian_influenza/
  4. 4. Imai M., Watanabe T., Hatta M. et al. // Nature. 2012. V. 486. P. 420. https://doi.org/10.1038/nature10831
  5. 5. Herfst S., Schrauwen E.J.A., Linster M. et al. // Science. 2012. V. 336. P. 1534. https://doi.org/10.1126/science.1213362
  6. 6. WHO. Global Influenza Programme. 2012. Available: http://www.who.int/influenza/en/
  7. 7. Mohanty P., Panda P., Acharya R.K. et al. // World J. Virol. 2023. V. 12. P. 242. https://doi.org/10.5501/wjv.v12.i5.242
  8. 8. Batool S., Chokkakula S., Song M.S. // Microorganisms. 2023. V. 11. P. 183. https://doi.org/10.3390/microorganisms11010183
  9. 9. Toots M., Plemper R.K. // Transl Res. 2020. V. 220. P. 33. https://doi.org/10.1016/j.trsl.2020.01.005
  10. 10. Нелюбин А.В., Клюкин И.Н., Жданов А.П. и др. // Журн. неорган. химии. 2021. Т. 66. № 2. С. 134. https://doi.org/10.31857/S0044457X21020136
  11. 11. Nelyubin A.V., Klyukin I.N., Zhdanov A.P. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 14. P. 1750. https://doi.org/10.1134/S0036023619140043
  12. 12. Zhizhin K.Y., Zhdanov A.P., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2010. V. 55. № 14. P. 2089. https://doi.org/10.1134/S0036023610140019
  13. 13. Акимов С.С., Матвеев Е.Ю., Разгоняева Г.А. и др. // Изв. АН. Сер. хим. 2010. № 2. С. 364.
  14. 14. Klyukin I.N., Zhdanov A.P., Matveev E.Yu. et al. // Inorg. Chem. Commun. 2014. V. 50. P. 28. https://doi.org/10.1016/j.inoche.2014.10.008
  15. 15. Klyukin I.N., Kubasov A.S., Limarev I.P. et al. // Polyhedron. 2015. V. 101. P. 215. https://doi.org/10.1016/j.poly.2015.09.025
  16. 16. Клюкин И.Н., Воинова В.В., Селиванов Н.А. и др. // Журн. неорган. химии. 2018. Т. 63. № 12. С. 1536.
  17. 17. Матвеев Е.Ю., Кубасов А.С., Разгоняева Г.А. и др. // Журн. неорган. химии. 2015. Т. 60. № 7. С. 858.
  18. 18. Retivov V.M., Matveev E.Yu., Lisovskiy M.V. et al. // Russ. Chem. Bull. 2010. V. 59. P. 550. https://doi.org/10.1007/s11172-010-0123-2
  19. 19. Al-Joumhawy M., Cendoya P., Shmalko A. et al. // J. Organomet. Chem. 2021. V. 949. P. 121967. https://doi.org/10.1016/j.jorganchem.2021.121967
  20. 20. Laila Z., Ghaida F., Anwar S. et al. // Main Group Chem. 2015. V. 14. P. 301. https://doi.org/10.3233/MGC-150173
  21. 21. Hawthorne M.F., Mavunkal I.J., Knobler C.B. // J. Am. Chem. Soc. 1992. V. 114. P. 4427. https://doi.org/10.1021/ja00037a074
  22. 22. Laila Z., Yazbeck O., Ghaida F. et al. // J. Organomet. Chem. 2020. V. 910. P. 121132. https://doi.org/10.1016/j.jorganchem.2020.121132
  23. 23. Norman A.H., Kaczmarczyk A. // Inorg. Chem. 1974. V. 13. P. 2316. https://doi.org/10.1021/ic50140a005
  24. 24. Peymann T., Hawthorne M.F. // Inorg. Chem. 2000. V. 39. P.1163.
  25. 25. Hall H.D., Ulrich B.D., Kultyshev R.G. et al. // Collect. Czech. Chem. Commun. 2002. V. 67. P. 1007. https://doi.org/10.1135/cccc20021007
  26. 26. Sivaev I.B., Prikaznov A.V., Naoufal D. // Collect. Czech. Chem. Commun. 2010. V. 75. P. 1149. https://doi.org/10.1135/cccc2010054
  27. 27. Sivaev I.B., Bregadze V.I., Sjöberg S. // Collect. Czech. Chem. Commun. 2002. V. 67. P. 679. https://doi.org/10.1135/cccc20020679
  28. 28. Peymann T., Gabel D. // Inorg. Chem. 1997. V. 36. P. 5138. https://doi.org/10.1021/ic970647t
  29. 29. Prikaznov A.V., Semioshkin A.A., Sivaev I.B. et al. // Russ. Chem. Bull. 2011. V. 60. P. 2550. https://doi.org/10.1007/s11172-011-0392
  30. 30. Justus E., Izteleuova D.T., Kasantsev A.V. et al. // Collect. Czech. Chem. Commun. 2007. V. 72. P. 1740. https://doi.org/10.1135/cccc200071740
  31. 31. Serdyukov A., Kosenko I., Druzina A. et al. // J. Organomet. Chem. 2021. V. 946. P. 121905. https://doi.org/10.1016/j.jorganchem.2021.121905
  32. 32. Matveev E.Y., Kubasov A.S., Nichugovskii A.I. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 644. https://doi.org/10.1134/S0036023623600545
  33. 33. Imperio D., Muz B., Azab A.K. et al. // Eur. J. Org. Chem. 2019. V. 2019. P. 7228. https://doi.org/10.1002/ejoc.201901412
  34. 34. Matveev E.Y., Razgonyaeva G.A., Mustyatsa V.N. et al. // Russ. Chem. Bull. 2010. V. 59. P. 556. https://doi.org/10.3390/inorganics10120238
  35. 35. Semioshkin A., Laskova J., Ilinova A. et al. // J. Organomet. Chem. 2011. V. 696. P. 539.
  36. 36. Matveev E.Y., Retivov V.M., Razgonyaeva G.A. et al. // Russ. J. Inorg. Chem. 2011. V. 56. P. 1549. https://doi.org/10.1134/S0036023611100160
  37. 37. Матвеев Е.Ю., Лимарев И.П., Ничуговский А.И. и др. // Журн. неорган. химии. 2019. Т. 64. № 8. С. 811. https://doi.org/10.1134/S0044457X19080087
  38. 38. Матвеев Е.Ю., Левицкая В.Я., Новиков С.С. и др. // Журн. неорган. химии. 2022. Т. 67. С. 1717. https://doi.org/10.31857/S0044457X22601031
  39. 39. Orlova A.V., Kondakov N.N., Kimel B.G. et al. // Appl. Organomet. Chem. 2007. V. 21. P. 98. https://doi.org/10.1002/aoc.1151
  40. 40. Druzina A.A., Zhidkova O.B., Kosenko I.D. // Russ. Chem. Bull. 2020. V. 69. P. 1080. https://doi.org/10.1007/s11172-020-2870-z
  41. 41. Meschaninova M.I., Novopashina D.S., Semikolenova O.A. et al. // Molecules. 2019. V. 24. № 23. P. 4266. https://doi.org/10.3390/molecules24234266
  42. 42. Druzina A.A., Grammatikova N.E., Zhidkova O.B. et al. // Molecules. 2022. V. 27. P. 2920. https://doi.org/10.3390/molecules27092920
  43. 43. Semioshkin A., Laskova J., Wojtczak B. et al. // J. Organomet. Chem. 2009. V. 694. P. 1375. https://doi.org/10.1016/j.jorganchem.2008.12.024
  44. 44. Shibnev V.A., Deryabin P.G., Garaev T.M. et al. // Russ. J. Bioorg. Chem. 2017. V. 43. P. 517. https://doi.org/10.1134/S1068162017050132
  45. 45. Avdeeva V.V., Garaev T.M., Breslav N.V. et al. // J. Biol. Inorg. Chem. 2022. V. 27. P. 421. https://doi.org/10.1007/s00775-022-01937-4
  46. 46. Garaev T.M., Grebennikova T.V., Avdeeva V.V. et al. // Probl. Virol. (Vopr. Virusol.). 2023. V. 68. P. 18. https://doi.org/10.36233/0507-4088-147
  47. 47. Жижин К.Ю., Мустяца В.Н., Малинина Е.А. и др. // Журн. неорган. химии. 2004. Т. 49. № 2. С. 221.
  48. 48. Shibnev V.A., Garaev T.M., Finogenova M.P. et al. // Bull. Exp. Biol. Med. 2012. V. 153. P. 233. https://doi.org/10.1007/s10517-012-1684-x
  49. 49. Corso G., Jing H., Barzilay B., Jaakkola R. // DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking. 2022. https://doi.org/10.48550/arXiv.2210.01776
  50. 50. Eberhardt J., Santos-Martins D., Tillack A.F., Forli S. // J. Chem. Inf. Model. 2021. V. 23. P. 3891. https://doi.org/10.1021/acs.jcim.1c00203
  51. 51. Ryabchikova M.N., Nelyubin A.V., Klyukin I.N. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624601892
  52. 52. Ryabchikova M.N., Nelyubin A.V., Smirnova A.V. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S003602362460093X
  53. 53. Сиваев И.Б. Дис. … докт. хим. наук. М., 2014.
  54. 54. Avdeeva V.V., Garaev T.M., Malinina E.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 28. https://doi.org/10.1134/S0036023622010028
  55. 55. Fu R., Miao Y., Qin H. // J. Am. Chem. Soc. 2020. V. 142. P. 2115. https://doi.org/10.1021/jacs.9b09985
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library