RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Synthesis and properties of LiNiO2 close to stoichiometric composition obtained by combined synthesis method

PII
S0044457X25010055-1
DOI
10.31857/S0044457X25010055
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 1
Pages
42-53
Abstract
This study presents the synthesis and characterisation of lithium nickelate LiNiO₂ with near-stoichiometric composition prepared by a combined method. LiNiO2 exhibits high electrochemical properties including a theoretical capacity of 250–270 mA/g, making it a promising cathode material for lithium-ion batteries as an alternative to LiCoO2. However, the commercial use of LiNiO₂ is limited by the difficulty in achieving stoichiometric composition and the high cost of conventional synthesis methods. Using X-ray phase analysis and spectrometry, we identified the phases formed and determined their chemical composition. Electron microscopy and Brunauer-Emmett-Teller (BET) techniques were used to investigate the structure and morphology. The developed process scheme led to the preparation of lithium nickelate with the composition Li(0.98)Ni(1.02)O₂, providing the formation of nanoscale samples with high specific surface area and improved electrochemical performance. These results emphasise the potential of LiNiO2 as a competitive cathode material for lithium-ion batteries.
Keywords
литий-ионные аккумуляторы катод никелат лития золь-гель твердофазный синтез
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Collins D.H. // J. Power Sources. 1994. V. 52. № 2. P. 313. https://doi.org/10.1016/0378-7753 (94)87026-8
  2. 2. Ohzuku T., Ueda A., Nagayama M. // J. Electrochem. Soc. 1993. V. 140. № 7. P. 1862. https://doi.org/10.1149/1.2220730
  3. 3. Kalaiselvi N., Periasamy P., Thirunakaran R. et al. // Ionics (Kiel). 2001. V. 7. № 4–6. P. 451. https://doi.org/10.1007/BF02373583
  4. 4. Minakshi M., Sharma N., Ralph D. et al. // Electrochem. Solid-State Lett. 2011. V. 14. № 6. P. A86. https://doi.org/10.1149/1.3561764
  5. 5. Divakaran A.M., Minakshi M., Bahri P.A. et al. // Prog. Solid State Chem. 2021. V. 62. P. 100298. https://doi.org/10.1016/j.progsolidstchem.2020.100298
  6. 6. Wang R.-C., Lin Y.-C., Wu S.-H. // Hydrometallurgy. 2009. V. 99. № 3–4. P. 194. https://doi.org/10.1016/j.hydromet.2009.08.005
  7. 7. Monajjemi M., Mollaamin F., Thu P.T. et al. // Russ. J. Electrochem. 2020. V. 56. № 8. P. 669. https://doi.org/10.1134/S1023193520030076
  8. 8. Sivajee Ganesh K., Purusottam Reddy B., Jeevan Kumar P. et al. // J. Electroanal. Chem. 2018. V. 828. P. 71. https://doi.org/10.1016/j.jelechem.2018.09.032
  9. 9. Kalyani P. // J. Power Sources. 2002. V. 111. № 2. P. 232. https://doi.org/10.1016/S0378-7753 (02)00307-5
  10. 10. Ramesh Babu B., Periasamy P., Thirunakaran R. et al. // Int. J. Inorg. Mater. 2001. V. 3. № 4–5. P. 401. https://doi.org/10.1016/S1466-6049 (01)00023-X
  11. 11. Thirunakaran R., Kalaiselvi N., Periasamy P. et al. // Ionics (Kiel). 2001. V. 7. № 3. P. 187. https://doi.org/10.1007/BF02419227
  12. 12. Bianchini M., Roca‐Ayats M., Hartmann P. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 31. P. 10434. https://doi.org/10.1002/anie.201812472
  13. 13. Hata M., Tanaka T., Kato D. et al. // Electrochem. 2021. V. 89. № 3. P. 223. https://doi.org/10.5796/electrochemistry.20-65151
  14. 14. Tolganbek N., Yerkinbekova Y., Kalybekkyzy S. et al. // J. Alloys Compd. 2021. V. 882. P. 160774. https://doi.org/10.1016/j.jallcom.2021.160774
  15. 15. Shembelʹ E.M., Apostolova R.D., Aurbach D. et al. // Russ. J. App. Chem. 2014. V. 87. № 9. P. 1260. https://doi.org/10.1134/S1070427214090122
  16. 16. Wang L., Chen B., Ma J. et al. // Chem. Soc. Rev. 2018. V. 47. № 17. P. 6505. https://doi.org/10.1039/C8CS00322J
  17. 17. Divakaran A.M., Minakshi M., Bahri P.A. et al. // Prog. Solid State Chem. 2021. V. 62. P. 100298. https://doi.org/10.1016/j.progsolidstchem.2020.100298
  18. 18. Kalyani P., Kalaiselvi N. // Sci. Technol. Adv. Mater. 2005. V. 6. № 6. P. 689. https://doi.org/10.1016/j.stam.2005.06.001
  19. 19. Kalyani P., Kalaiselvi N., Renganathan N.G. // J. Power Sources. 2003. V. 123. № 1. P. 53. https://doi.org/10.1016/S0378-7753 (03)00458-0
  20. 20. Kalyani P., Kalaiselvi N., Renganathan N.G. et al. // Mater. Res. Bull. 2004. V. 39. № 1. P. 41. https://doi.org/10.1016/j.materresbull.2003.09.021
  21. 21. Mesnier A., Manthiram A. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 47. P. 52826. https://doi.org/10.1021/acsami.0c16648
  22. 22. Välikangas J., Laine P., Hietaniemi M. et al. // Appl. Sci. 2020. V. 10. № 24. P. 8988. https://doi.org/10.3390/app10248988
  23. 23. Bianchini M., Fauth F., Hartmann P. et al. // J. Mater. Chem. A. Mater. 2020. V. 8. № 4. P. 1808. https://doi.org/10.1039/C9TA12073D
  24. 24. Pesterfield L. // J. Chem. Educ. 2009. V. 86. № 10. P. 1182. https://doi.org/10.1021/ed086p1182
  25. 25. Tretyakov Yu.D., Martynenko L.I., Grigoriev A.N., Tsivadze A.Yu. // Inorg. Сhem. 2001. V. 1. Р. 378.
  26. 26. Makhonina E.V., Pervov V.S., Dubasova V.S. // Russ. Chem. Rev. 2004. V. 73. № 10. P. 991. https://doi.org/10.1070/RC2004v073n10ABEH000896
  27. 27. Рабинович В.А., Хавик Э.Я. Краткий химический справочник. Л.: Химия, 1978. 334 с.
  28. 28. Riewald F., Kurzhals P., Bianchini M. et al. // J. Electrochem. Soc. 2022. V. 169. № 2. P. 020529. https://doi.org/10.1149/1945-7111/ac4bf3
  29. 29. Taha T.A., El-Molla M.M. // J. Mater. Res.Technol. 2020. V. 9. № 4. P. 7955. https://doi.org/10.1016/j.jmrt.2020.04.098
  30. 30. Yan F.Y., Zhang H., Lai Q. // J. Sichuan University. 2002. V. 39. P. 918.
  31. 31. Ohzuku T., Ueda A., Nagayama M. et al. // Electrochim. Acta. 1993. V. 38. № 9. P. 1159. https://doi.org/10.1016/0013-4686 (93)80046-3
  32. 32. Taha T.A., Elrabaie S., Attia M.T. // J. Mater. Sci.: Mater. Electron 2018. V. 29. № 21. P. 18493. https://doi.org/10.1007/s10854-018-9965-4
  33. 33. Levi M.D., Aurbach D. // J. Phys. Chem. B. 2004. V. 108. № 31. P. 11693. https://doi.org/10.1021/jp0486402
  34. 34. Umeda M., Dokko K., Fujita Y. et al. // Electrochim. Acta. 2001. V. 47. № 6. P. 885. https://doi.org/10.1016/S0013-4686 (01)00799-X
  35. 35. Wang C., Appleby A.J., Little F.E. // Electrochim. Acta. 2001. V. 46. № 12. P. 1793. https://doi.org/10.1016/S0013-4686 (00)00782-9
  36. 36. Ivanishchev A.V., Gridina N.A., Rybakov K.S. et al. // J. Electroanal. Chem. 2020. V. 860. P. 113894. https://doi.org/10.1016/j.jelechem.2020.113894
  37. 37. Чуриков А.В., Иванищев А.В., Запсис К.В. и др. // Электрохим. энергетика. 2007. T. 7. № 4. С. 169.
  38. 38. Amin R., Ravnsbæk D.B., Chiang Y.-M. // J. Electrochem. Soc. 2015. V. 162. № 7. P. A1163. https://doi.org/10.1149/2.0171507jes
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library