- PII
- 10.31857/S0044457X25040147-1
- DOI
- 10.31857/S0044457X25040147
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 4
- Pages
- 606-614
- Abstract
- Using aerosol-assisted vapor deposition (AACVD), bilayer ZnO/CrO thin-film nanocomposites were prepared and validated using various physicochemical analysis techniques. The thermal behavior of precursors: zinc and chromium acetylacetonates was studied using TGA/DSC. The chemical composition of the obtained coatings was confirmed by EDX method, and the physical composition was confirmed by X-ray diffraction and Raman spectroscopy. The microstructural features were studied by SEM method. It was found that by varying the precursor concentration it is possible to change the morphology of the obtained coatings from an island structure to a continuous film. It is shown that ZnO/CrO bilayer films demonstrate a noticeable chemoresistive response in acetone detection.
- Keywords
- газовый сенсор AACVD оксид цинка оксид хрома нанокомпозит
- Date of publication
- 05.12.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 2
References
- 1. Damianos D., Mouly J., Delbos P. Status of the MEMS industry 2021 //“Status of the MEMS industry” Yole development. – 2021.
- 2. Deng Y. // Semiconducting Metal Oxides for Gas Sensing. Elsеvier, 2019. https://doi.org/10.1007/978-981-13-5853-1
- 3. Seiyama T., Kagawa S. // Anal. Chem. 1966. V. 38. № 8. P. 1069. https://doi.org/10.1021/ac60240a031
- 4. Abegunde O.O., Akinlabi E.T., Oladijo O.P. et al. // ALMS Mater. Sci. 2019. V. 6. № 2. P. 174. https://doi.org/10.3934/matersci.2019.2.174
- 5. Sun L., Yuan G., Gao L. et al. // Nature Rev. Methods Primers. 2021. V. 1. № 1. https://doi.org/10.1038/s43586-020-00005-y
- 6. Kuzminykh Y., Dabirian A., Reinke M. et al. // Surf. Coat. Technol. 2013. V. 230. P. 13. https://doi.org/10.1016/j.surfcoat.2013.06.059
- 7. Hou X., Choy K.L. // Chem. Vap. Deposition. 2006. V. 12. № 10. P. 583. https://doi.org/10.1002/cvde.200600033
- 8. Jeong S.Y., Kim J.S., Lee J.H. // Adv. Mater. 2020. V. 32. № 51. P. 2002075. https://doi.org/10.1002/adma.202002075
- 9. Ahmad R., Majhi S.M., Zhang X. et al. // Adv. Colloid Interface Sci. 2019. V. 270. P. 1. https://doi.org/10.1016/j.cis.2019.05.006
- 10. Mokrushin A.S., Nagornov I.A., Gorban Y.M. et al. // J. Alloys Compd. 2024. V. 1009. P. 176856. https://doi.org/10.1016/j.jallcom.2024.176856
- 11. Mokrushin A.S., Nagornov I.A., Gorban Y.M. et al. // Ceram. Int. 2023. V. 49. № 11. Part A. P. 17600. https://doi.org/10.1016/j.ceramint.2023.02.126
- 12. Sinha M., Neogi S., Mahapatra R. et al. // Sens. Actuators, B: Chem. 2021. V. 336. P. 129729. https://doi.org/10.1016/j.sub.2021.129729
- 13. Mokrushin A.S., Gorban Y.M., Averin A.A. et al. // Biosensors. 2023. V. 13. № 445. P. 1. https://doi.org/10.3390/bios13040445
- 14. Mokrushin A.S., Gorban Y.M., Averin A.A. et al. // Ceram. Int. 2024. V. 50. № 6. P. 8777. https://doi.org/10.1016/j.ceramint.2023.12.194
- 15. Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Micromachines. 2023. V. 14. № 725. P. 1. https://doi.org/10.3390/m114040725
- 16. Woo H.S., Na C.W., Kim I.D. et al. // Nanotechnology. 2012. V. 23. № 24. P. 245501. https://doi.org/10.1088/0957-4484/23/24/245501
- 17. Jayababu N., Poloju M., Reddy M.V.R. // AIP Conf. Proc. 2019. V. 2082. № March. P. 3. https://doi.org/10.1063/1.5093843
- 18. Park S., Sun G.J., Jin C. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 4. P. 2805. https://doi.org/10.1021/acsami.5b11485
- 19. Najafi V., Zolghadar S., Kimiagar S. // Optik. 2019. V. 182. P. 249. https://doi.org/10.1016/j.ijleo.2019.01.015
- 20. Wang T.yang, Li Y.yuan, Li T. tian et al. // Solid State Ionics. 2018. V. 326. P. 173. https://doi.org/10.1016/j.ssi.2018.10.006
- 21. Kamalianfar A., Naseri M.G., Jahromi S.P. // Chem. Phys. Lett. 2019. V. 732. P. 136648. https://doi.org/10.1016/j.cplett.2019.136648
- 22. Selvaraj B., Karnam J.B., Rayappan J.B.B. // Ceram. Int. 2023. V. 49. № 23. P. 37106. https://doi.org/10.1016/j.ceramint.2023.08.308
- 23. Al-Hardan N.H., Abdullah M.J., Aziz A.A. // Appl. Surf. Sci. 2013. V. 270. P. 480. https://doi.org/10.1016/j.apsusc.2013.01.064
- 24. Abdul Kareem S.M., Suhail M.H., Adelmash I.K. // Iraqi J. Sci. 2021. V. 62. № 7. P. 2176. https://doi.org/10.24996/jts.2021.62.7.7
- 25. Vallejos S., Przurovch N., Grácica I. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 48. P. 33335. https://doi.org/10.1021/acsami.6b12992
- 26. Roy A., Sood A.K. // Pramana: J. Phys. 1995. V. 44. № 3. P. 201. https://doi.org/10.1007/BF02848471
- 27. Šepanovic M., Grujic-Brojčin M., Vojisavljević K. et al. // J. Raman Spectroscopy. 2010. V. 41. № 9. P. 914. https://doi.org/10.1002/jrs.2546
- 28. Gomes A.S.O., Yaghini N., Martinelli A. et al. // J. Raman Spectroscopy. 2017. V. 48. № 10. P. 1256. https://doi.org/10.1002/jrs.5198
- 29. Chen M., Wang Z., Han D. et al. // J. Phys. Chem. C. 2011. V. 115. № 26. P. 12763. https://doi.org/10.1021/jp201816d