RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

AACVD SYNTHESIS OF BILAYER THIN-FILM ZnO/CrO NANOCOMPOSITES FOR CHEMORESISTIVE GAS SENSORS

PII
10.31857/S0044457X25040147-1
DOI
10.31857/S0044457X25040147
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
606-614
Abstract
Using aerosol-assisted vapor deposition (AACVD), bilayer ZnO/CrO thin-film nanocomposites were prepared and validated using various physicochemical analysis techniques. The thermal behavior of precursors: zinc and chromium acetylacetonates was studied using TGA/DSC. The chemical composition of the obtained coatings was confirmed by EDX method, and the physical composition was confirmed by X-ray diffraction and Raman spectroscopy. The microstructural features were studied by SEM method. It was found that by varying the precursor concentration it is possible to change the morphology of the obtained coatings from an island structure to a continuous film. It is shown that ZnO/CrO bilayer films demonstrate a noticeable chemoresistive response in acetone detection.
Keywords
газовый сенсор AACVD оксид цинка оксид хрома нанокомпозит
Date of publication
05.12.2024
Year of publication
2024
Number of purchasers
0
Views
2

References

  1. 1. Damianos D., Mouly J., Delbos P. Status of the MEMS industry 2021 //“Status of the MEMS industry” Yole development. – 2021.
  2. 2. Deng Y. // Semiconducting Metal Oxides for Gas Sensing. Elsеvier, 2019. https://doi.org/10.1007/978-981-13-5853-1
  3. 3. Seiyama T., Kagawa S. // Anal. Chem. 1966. V. 38. № 8. P. 1069. https://doi.org/10.1021/ac60240a031
  4. 4. Abegunde O.O., Akinlabi E.T., Oladijo O.P. et al. // ALMS Mater. Sci. 2019. V. 6. № 2. P. 174. https://doi.org/10.3934/matersci.2019.2.174
  5. 5. Sun L., Yuan G., Gao L. et al. // Nature Rev. Methods Primers. 2021. V. 1. № 1. https://doi.org/10.1038/s43586-020-00005-y
  6. 6. Kuzminykh Y., Dabirian A., Reinke M. et al. // Surf. Coat. Technol. 2013. V. 230. P. 13. https://doi.org/10.1016/j.surfcoat.2013.06.059
  7. 7. Hou X., Choy K.L. // Chem. Vap. Deposition. 2006. V. 12. № 10. P. 583. https://doi.org/10.1002/cvde.200600033
  8. 8. Jeong S.Y., Kim J.S., Lee J.H. // Adv. Mater. 2020. V. 32. № 51. P. 2002075. https://doi.org/10.1002/adma.202002075
  9. 9. Ahmad R., Majhi S.M., Zhang X. et al. // Adv. Colloid Interface Sci. 2019. V. 270. P. 1. https://doi.org/10.1016/j.cis.2019.05.006
  10. 10. Mokrushin A.S., Nagornov I.A., Gorban Y.M. et al. // J. Alloys Compd. 2024. V. 1009. P. 176856. https://doi.org/10.1016/j.jallcom.2024.176856
  11. 11. Mokrushin A.S., Nagornov I.A., Gorban Y.M. et al. // Ceram. Int. 2023. V. 49. № 11. Part A. P. 17600. https://doi.org/10.1016/j.ceramint.2023.02.126
  12. 12. Sinha M., Neogi S., Mahapatra R. et al. // Sens. Actuators, B: Chem. 2021. V. 336. P. 129729. https://doi.org/10.1016/j.sub.2021.129729
  13. 13. Mokrushin A.S., Gorban Y.M., Averin A.A. et al. // Biosensors. 2023. V. 13. № 445. P. 1. https://doi.org/10.3390/bios13040445
  14. 14. Mokrushin A.S., Gorban Y.M., Averin A.A. et al. // Ceram. Int. 2024. V. 50. № 6. P. 8777. https://doi.org/10.1016/j.ceramint.2023.12.194
  15. 15. Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Micromachines. 2023. V. 14. № 725. P. 1. https://doi.org/10.3390/m114040725
  16. 16. Woo H.S., Na C.W., Kim I.D. et al. // Nanotechnology. 2012. V. 23. № 24. P. 245501. https://doi.org/10.1088/0957-4484/23/24/245501
  17. 17. Jayababu N., Poloju M., Reddy M.V.R. // AIP Conf. Proc. 2019. V. 2082. № March. P. 3. https://doi.org/10.1063/1.5093843
  18. 18. Park S., Sun G.J., Jin C. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 4. P. 2805. https://doi.org/10.1021/acsami.5b11485
  19. 19. Najafi V., Zolghadar S., Kimiagar S. // Optik. 2019. V. 182. P. 249. https://doi.org/10.1016/j.ijleo.2019.01.015
  20. 20. Wang T.yang, Li Y.yuan, Li T. tian et al. // Solid State Ionics. 2018. V. 326. P. 173. https://doi.org/10.1016/j.ssi.2018.10.006
  21. 21. Kamalianfar A., Naseri M.G., Jahromi S.P. // Chem. Phys. Lett. 2019. V. 732. P. 136648. https://doi.org/10.1016/j.cplett.2019.136648
  22. 22. Selvaraj B., Karnam J.B., Rayappan J.B.B. // Ceram. Int. 2023. V. 49. № 23. P. 37106. https://doi.org/10.1016/j.ceramint.2023.08.308
  23. 23. Al-Hardan N.H., Abdullah M.J., Aziz A.A. // Appl. Surf. Sci. 2013. V. 270. P. 480. https://doi.org/10.1016/j.apsusc.2013.01.064
  24. 24. Abdul Kareem S.M., Suhail M.H., Adelmash I.K. // Iraqi J. Sci. 2021. V. 62. № 7. P. 2176. https://doi.org/10.24996/jts.2021.62.7.7
  25. 25. Vallejos S., Przurovch N., Grácica I. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 48. P. 33335. https://doi.org/10.1021/acsami.6b12992
  26. 26. Roy A., Sood A.K. // Pramana: J. Phys. 1995. V. 44. № 3. P. 201. https://doi.org/10.1007/BF02848471
  27. 27. Šepanovic M., Grujic-Brojčin M., Vojisavljević K. et al. // J. Raman Spectroscopy. 2010. V. 41. № 9. P. 914. https://doi.org/10.1002/jrs.2546
  28. 28. Gomes A.S.O., Yaghini N., Martinelli A. et al. // J. Raman Spectroscopy. 2017. V. 48. № 10. P. 1256. https://doi.org/10.1002/jrs.5198
  29. 29. Chen M., Wang Z., Han D. et al. // J. Phys. Chem. C. 2011. V. 115. № 26. P. 12763. https://doi.org/10.1021/jp201816d
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library