- Код статьи
- 10.31857/S0044457X24120109-1
- DOI
- 10.31857/S0044457X24120109
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 69 / Номер выпуска 12
- Страницы
- 1774-1784
- Аннотация
- Статья посвящена синтезу, установлению специфики структуры и электропроводящих свойств катиони анион-дефицитных шеелитоподобных твердых растворов Sr1-1.5x-yBix+yФ0.5xMo1-yVyO4 и Sr1-1.5xBixФ0.5xMo1-yVyO4-d, где Ф - катионная вакансия. Установлены области гомогенности твердых растворов, комплексом методов изучены их структурные особенности. С помощью сканирующей электронной микроскопии исследованы размерные характеристики и морфология керамических образцов. Общая электропроводность соединений измерена методом импедансной спектроскопии в диапазоне температур 400-650℃. Для оценки вклада электронной и протонной компоненты в общую электропроводность твердых растворов измерены электропроводящие характеристики во влажной атмосфере и при различных парциальных давлениях кислорода. Построены и проанализированы аррениусовские зависимости электропроводности от обратной температуры.
- Ключевые слова
- шеелит висмут ванадий электропроводность рамановская спектроскопия
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 11
Библиография
- 1. Wang Y., Ma J., Tao J. et al. // Ceram. Int. 2007. V. 33. № 4. P. 693. https://doi.org/i0.i0i6/j.ceramint.2005.ii.003
- 2. Nikl M., Bohacek P., Mihokova E. et al. // J. Lumin. 2000. V. 87. P. ii36. https://doi.org/i0.i0i6/S0022-23i3 (99)00569-4
- 3. Errandonea D., Manjon F.J. // Prog. Mater Sci. 2008. V. 53. № 4. P. 7ii. https://doi.org/i0.i0i6/j.pmatsci.2008.02.00i
- 4. Sczancoski J.C., Cavalcante L.S., Joya M.R. et al. // Chem. Eng. J. 2008. V. i40. № i. P. 632. https://doi.org/i0.i0i6/j.cej.2008.0i.0i5
- 5. Salavati-Niasari M., Shoshtari-Yeganeh B., Bazarganipour M. // Superlattices Microstruct. 2008. V. 58. P. 20. https://doi.org/i0.i0i6/j.spmi.20i3.02.003
- 6. Noori E., Bazarganipour M., Salavati-Niasari M. etal.//J. Cluster Sci. 20i3.V.24.№4.P. ii7i. https://doi.org/i0.i007/si0876-0i3-0607-y
- 7. Sujatha R.A., Flower N.A.L., Vinitha G. et al. // Appl. Surf. Sci. 20i9. V. 490. P. 260. https://doi.org/i0.i0i6/j.apsusc.20i9.06.086
- 8. Bi J., Wu L., Zhang Y. et al. // Appl. Catal., B. 2009. V. 9i. № i. P. i35. https://doi.org/i0.i0i6/j.apcatb.2009.05.0i6
- 9. Thongtem T., Kungwankunakorn S., Kuntalue B. et al. // J. Alloys Compd. 20i0. V. 506. № i. P. 475. https://doi.org/i0.i0i6/j.jallcom.20i0.07.033
- 10. Li Z., Wang J., Zhang H. et al. // J. Cryst. Growth. 20ii. V. 3i8. № i. P. 679. https://doi.org/i0.i0i6/j.jcrysgro.20i0.i0.207
- 11. Cavalcante L.S., Sczancoski J.C., Batista N.C. et al. // Adv. Powder Technol. 20i3. V. 24. № i. P. 344. https://doi.org/i0.i0i6/j.apt.20i2.08.007
- 12. Errandonea D., Kumar R.S., Ma X. et al. // J. Solid State Chem. 2008. V. i8i. № 2. P. 355. https://doi.org/i0.i0i6/j.jssc.2007.i2.0i0
- 13. Luo J., Bai X., LiQ. et al. // Nano Energy. 2019. V. 66. P. 104187. https://doi.org/10.1016/j.nanoen.2019.104187
- 14. Elakkiya V., Sumathi S. // Mater. Lett. 2019. V. 263. P. 127246. https://doi.org/10.1016/j.matlet.2019.127246
- 15. Benchikhi M., Azzouzi A., Hattaf R. et al. // Opt. Mater. 2022. V. 132. P. 112802. https://doi.org/10.1016/j.optmat.2022.112802
- 16. Cui J., Li Y., Li H. et al. // Microchem. J. 2022. V. 181. P. 107736. https://doi.org/10.1016/j.microc.2022.107736
- 17. Guo J., Randall C.A., Zhou D. et al. // J. Eur. Ceram. Soc. 2015. V. 35. № 16. P. 4459 https://doi.org/10.1016/j.jeurceramsoc.2015.08.020
- 18. Esaka T. // Solid State Ionics. 2000. V. 136. P. 1. https://doi.org/10.1016/S0167-2738 (00)00377-5
- 19. Yang X., Wang Y., Wang N. et al. // J. Mater. Sci. Mater. Electron. 2014. V. 25. P. 3996. https://doi.org/10.1007/s10854-014-2119-4
- 20. Jena P., Nallamuthu N., Satyanarayana N. et al. // TechConnect Briefs. 2012. V. 4. P. 176.
- 21. Sleight J.A.W., Aykan K., Rogers D.B. //J. Solid State Chem. 1975. V. 13. № 3. P. 231. https://doi.org/10.1016/0022-4596 (75)90124-3
- 22. Wang Y., Xu H., Shao C. et al. // Appl. Surf. Sci. 2017. V. 392. P. 649. https://doi.org/10.1016/j.apsusc.2016.09.097
- 23. Mikhaylovskaya Z.A., Pankrushina E.A., Komleva E.V. et al. // Mater. Sci. Eng. B. 2022. V. 281. P. 115741. https://doi.org/10.1016/j.mseb.2022.115741
- 24. Mikhaylovskaya Z.A., Buyanova E.S., Petrova S.A. et al. // Chim. Techno Acta. 2021. V. 8. № 2. P. 20218204. https://doi.org/10.15826/chimtech.2021.8.2.04
- 25. Никитина А.А., Михайловская З.А., Князев Н.С. и др. // Сб. статей Междунар. молодежн. науч. конф. “Физика. Технологии. Инновации”. Екатеринбург: УрФУ, 2020. С. 213.
- 26. Климова А.В., Михайловская З.А., Буянова Е.С., Петрова С.А. // Тр. Кольского научного центра РАН. Сер. Технические науки. 2023. Т. 14. № 3. С. 176. https://doi.org/10.37614/2949-1215.2023.14.3.032
- 27. High-Performance Scientific Instruments and Solutions for Molecular and Materials Research, as well as for Industrial and Applied Analysis. Bruker AXS GmbH. Karlsruhe. 2017.
- 28. PDF-4+ JCPDS International Centre for Diffraction Data. Newtown Square. 2016.
- 29. Laugier J., Bochu B. Basic Demonstration of CELREF Unit-Cell refinement software on a multiphase system. Collaborative Computational. Project № 14. London. 2003.
- 30. Shannon R.D. // Acta Crystallogr., Sect. A: Found. 1976. V. 32. № 5. Р. 751. https://doi.org/10.1107/S0567739476001551
- 31. Vali R. // Comp. Mater. Sci. 2011. V. 50. № 9. Р. 2683. https://doi.org/10.1016/j.commatsci.2011.04.018
- 32. Hardcastle F.D., Wachs I.E. //J. Phys. Chem. 1995. V. 95. № 26. Р. 10763. https://doi.org/10.1021/j100179a045
- 33. Петров К.И., Полозникова М.Э., Шарипов Х.Т., Фомичев В.В. Колебательные спектры молибдатов и вольфраматов. Ташкент: Фан, 1990. 136 с.
- 34. Irvine J.T.S., Sinclair D.C., West A.R. // Adv. Mater. 1990. V. 2. № 3. P. 132. https://doi.org/10.1002/adma.19900020304
- 35. Hoffart L., Heider U., Jorissen L. et al. // Solid State Ionics. 1994. V. 72. № 2. P. 195. https://doi.org/10.1016/0167-2738 (94)90146-5
- 36. Vinke I.C., Diepgrond J., Boukamp B.A. et al. // Solid State Ionics. 1992. V 57. № 1-2. P 83. https://doi.org/10.1016/0167-2738 (92)90067-Y
- 37. Ayame A., Uchida K., Iwataya M. et al. // Appl. Catal., A. 2002. V. 227. № 1. P. 7. https://doi.org/10.1016/S0926-860X (01)00918-8
- 38. Friedric M., Karthe W. // Phys. Status Solidi B. 1980. V. 97. № 1. P. 113. https://doi.org/10.1002/pssb.2220970111
- 39. Brandao A.D., Nasani N., Yaremchenko A.A. et al. // Int. J. Hydrogen Energy. 2018. V. 43. № 40. P. 18682. https://doi.org/10.1016/j.ijhydene.2018.05.146