RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

HYDROTHERMAL SYNTHESIS OF AQUEOUS SOLS OF NANOCRYSTALLINE HAFNIUM DIOXIDE STABILIZED BY LACTIC ACID AND THEIR ENZYME-LIKE ACTIVITIES

PII
10.31857/S0044457X24120092-1
DOI
10.31857/S0044457X24120092
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 12
Pages
1763-1773
Abstract
A method for obtaining aqueous sols of nanocrystalline hafnium dioxide (with hydrodynamic diameter 20-35 nm) stabilised by lactic acid (lactate ions) and characterised by high colloidal stability (zeta-potential -29 mV) has been developed. The method is based on the hydrothermal treatment of a previously obtained complex compound of hafnium with lactic acid in the presence of urea at temperatures of 180 and 220 degrees Celsius for 48 and 96 h. By chemiluminescence analysis in the model reaction of luminol oxidation it was found that nanocrystalline hafnium oxide in the composition of sols exhibits dose-dependent pro-oxidant activity towards hydrogen peroxide and thus exhibits peroxidase-like properties.
Keywords
наноматериалы нанозимы коллоидные растворы диоксид гафния хемилюминесценция прооксидант пероксидазоподобная активность
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Ramadoss A., Krishnamoorthy K., Kim S.J. // Mater. Res. Bull. 2012. V. 47. № 9. P. 2680. https://doi.org/10.1016/j.materresbull.2012.05.051
  2. 2. Wang J., Li H.P., Stevens R. // J. Mater. Sci. 1992. V. 27. № 20. P. 5397. https://doi.org/10.1007/BF00541601
  3. 3. Robertson J. // Eur. Phys. J. - Appl. Phys. 2004. V 28. P. 265. https://api.semanticscholar.org/CorpusID:28017611
  4. 4. Bersuker G., Gilmer D.C., Veksler D. et al. // Tech. Dig. — Int. Electron Devices Meet. 2010. P. 456. https://doi.org/10.1109/IEDM.2010.5703394
  5. 5. Yu S., Guan X., Wong H.S.P. // Appl. Phys. Lett. 2011. V. 99. № 6. P. 2011. https://doi.org/10.1063/1.3624472
  6. 6. Lee H.Y., Chen Y.S., Chen P.S. et al. // IEEE Int. 2010. V. 55. № 1. P. 19.7.1. https://doi.org/10.1109/IEDM.2010.5703395
  7. 7. Al-Kuhaili M.F., Durrani S.M.A., Bakhtiari I.A. et al. // Mater. Chem. Phys. 2011. V. 126. № 3. P. 515. https://doi.org/10.1016/j.matchemphys.2011.01.036
  8. 8. Wang Y., Lin Z., Cheng X. et al. // Appl. Surf. Sci. 2004. V 228. № 1-4. P. 93. https://doi.org/10.1016/j.apsusc.2003.12.028
  9. 9. Adam J., Rogers M.D. // Acta Crystallogr. 1959. V. 12. № 11. P. 951. https://doi.org/10.1107/s0365110x59002742
  10. 10. Curtis C.E., Doney L.M., Johnson J.R. // J. Am. Ceram. Soc. 1954. V. 37.№ 10. P. 458. https://doi.org/10.1111/j.1151-2916.1954.tb13977.x
  11. 11. Ruh R., Garrett H.J., Domagala R.F. et al. // J. Am. Ceram. Soc. 1968. V. 51.№ 1. P. 23.
  12. 12. Guskov V.N., Gagarin P.G., Guskov A.V. et al. // Russ. J. Inorg. Chem. 2019. V. 64.№ 11. P. 1436. https://doi.org/10.1134/S0036023619110068
  13. 13. Folomeikin Y.I., Karachevtsev F.N., Stolyarova V.L. // Russ. J. Inorg. Chem. 2019. V. 64. № 7. P. 934. https://doi.org/10.1134/S0036023619070088
  14. 14. Chaubey G.S., Yao Y., Makongo J.P.A. et al. // RSC Adv. 2012. V. 2. № 24. P. 9207. https://doi.org/10.1039/c2ra21003g
  15. 15. Giacobbe J., Dunning D.N. // Nucl. Sci. Eng. 1958. V. 4. № 3. P. 467. https://doi.org/10.13182/nse58-a25543
  16. 16. Cunningham G.W., Foulds A.K., Keller D.L. et al. // Nucl. Sci. Eng. 1958. V. 4. № 3. P. 449. https://doi.org/10.13182/nse58-a25541
  17. 17. Field J.A., Luna-Velasco A., Boitano S.A. et al. // Chemosphere. 2011. V. 84.№ 10. P. 1401. https://doi.org/10.1016/j.chemosphere.2011.04.067
  18. 18. Bagley A.F., Ludmir E.B., Maitra A. et al. // Clin. Transl. Radiat. Oncol. 2022. V. 33. P. 66. https://doi.org/10.1016/j.ctro.2021.12.012
  19. 19. Maggiorella L., Barouch G., Devaux C. et al. // Futur. Oncol. 2012. V. 8. № 9. P. 1167. https://doi.org/10.2217/fon.12.96
  20. 20. Shcherbakov A.B., Ivanov V.K., Zholobak N.M. et al. // Biophysics (Oxf). 2011. V. 56.№6. P. 987. https://doi.org/10.1134/S0006350911060170
  21. 21. Shcherbakov A.B., Zholobak N.M., Spivak N.Y. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 13. P. 1556. https://doi.org/10.1134/S003602361413004X
  22. 22. Ivanova O.S., Shekunova T.O., Ivanov V.K. et al. // Dokl. Chem. 2011. V. 437. № 2. P. 103. https://doi.org/10.1134/S0012500811040070
  23. 23. Ivanov V.K., Polezhaeva O.S., Shaporev A.S. et al. // Russ. J. Inorg. Chem. 2010. V. 55.№ 3. P. 328. https://doi.org/10.1134/S0036023610030046
  24. 24. Stefanic G., Music S., Molcanov K. // J. Alloys Compd. 2005. V 387. № 1-2. P. 300. https://doi.org/10.1016/j.jallcom.2004.06.064
  25. 25. De Roo J., De Keukeleere K., Feys J. et al. // J. Nanoparticle Res. 2013. V. 15. № 7. https://doi.org/10.1007/s11051-013-1778-z
  26. 26. Tirosh E., Markovich G. // Adv. Mater. 2007. V. 19. № 18. P. 2608. https://doi.org/10.1002/adma.200602222
  27. 27. Qi J., Zhou X. // Colloids Surf. A Physicochem. Eng. Asp. 2015. V. 487. P. 26. https://doi.org/10.1016/j.colsurfa.2015.09.037
  28. 28. Filippova A.D., Baranchikov A.E., Ivanov V.K. // Colloid J. 2023. V. 85. № 5. P. 782. https://doi.org/10.1134/S1061933X23600653
  29. 29. Elmowafy E.M., Tiboni M., Soliman M.E. // Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. Singapore: Springer, 2019. https://doi.org/10.1007/s40005-019-00439-x
  30. 30. Yapryntsev A.D., Baranchikov A.E., Churakov A.V. et al. // RSC Adv. 2021. V. 11.№ 48. P. 30195. https://doi.org/10.1039/d_1ra05923h
  31. 31. Dhup S., Kumar Dadhich R., Ettore Porporato P. et al. // Curr. Pharm. Des. 2012. V. 18.№ 10. P. 1319. https://doi.org/10.2174/138161212799504902
  32. 32. Apostolova P., Pearce E.L. // Trends Immunol. 2022. V. 43. № 12. P. 969. https://doi.org/10.1016/j.it.2022.10.005
  33. 33. Hirschhaeuser F., Sattler U.G.A., Mueller-Klieser W. // Cancer Res. 2011. V. 71.№ 22. P. 6921. https://doi.org/10.1158/0008-5472.CAN-11-1457
  34. 34. Pohanka M. // Biomed Res. Int. 2020. V. 2020. https://doi.org/10.1155/2020/3419034
  35. 35. Kakihana M., Kobayashi M., Tomita K. et al. // Bull. Chem. Soc. Jpn. 2010. V. 83.№ 11. P. 1285. https://doi.org/10.1246/bcsj.20100103
  36. 36. Rose J., De Bruin T.J.M., Chauveteau G. et al. // J. Phys. Chem. B. 2003. V. 107. № 13. P. 2910. https://doi.org/10.1021/jp027114c
  37. 37. Meskin P.E., Gavrilov A.I., Maksimov V.D. et al. // Russ. J. Inorg. Chem. 2007. V. 52. № 11. P. 1648. https://doi.org/10.1134/S0036023607110022
  38. 38. Ivanov V.K., Baranchikov A.E., Tret’yakov Y.D. // Russ. J. Inorg. Chem. 2010. V. 55. № 5. P. 665. https://doi.org/10.1134/S0036023610050037
  39. 39. Hudak B.M., Depner S.W., Waetzig G.R. et al. // Nat. Commun. 2017. V. 8. № May. P. 1. https://doi.org/10.1038/ncomms15316
  40. 40. Willard H.H., Tang N.K. // J. Am. Chem. Soc. 1937. V. 59. № 7. P. 1190. https://doi.org/10.1021/ja01286a010
  41. 41. Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. // Russ. Chem. Rev. 2020. V. 89. № 6. P. 629. https://doi.org/10.1070/RCR4920
  42. 42. Таран Г.С., Баранчиков А.Е., Иванова О.С. и др. // Журн. неорган. химии. 2020. Т. 65. № 6. С. 725. https://doi.org/10.31857/s0044457x20060239
  43. 43. Baranchikov A.E., Sozarukova M.M., Mikheev I.V. etal.//NewJ. Chem. 2023. V. 47. № 44. P. 20388. https://doi.org/10.1039/D3NJ03728B
  44. 44. Filippova A.D., Sozarukova M.M., Baranchikov A.E. et al. // Molecules. 2023. V. 28. № 9. https://doi.org/10.3390/molecules28093811
  45. 45. Teplonogova M.A., Volostnykh M.V., Yapryntsev A.D. et al. // Int. J. Mol. Sci. 2022. V. 23. № 23. https://doi.org/10.3390/ijms232315373
  46. 46. Qin L., Hu Y., Wei H. // Nanozymes: Preparation and Characterization. 2020. P. 79. https://doi.org/10.1007/978-981-15-1490-6_4
  47. 47. Vladimirov Y.A., Proskurnina E.V. // Biochem. 2009. V. 74. № 13. P. 1545. https://doi.org/10.1134/S0006297909130082
  48. 48. Deng M., Xu S., Chen F. // Anal. Methods. 2014. V. 6. № 9. P. 3117. https://doi.org/10.1039/c3ay42135j
  49. 49. Li C., Shi X., Shen Q. et al. //J. Nanomater. 2018. V. 2018. https://doi.org/10.1155/2018/4857461
  50. 50. Giussani A., Farahani P., Martnez-Munoz D. et al. // Chem. -AEur.J. 2019. V. 25.№ 20. P. 5202. https://doi.org/10.1002/chem.201805918
  51. 51. Zhao H., Dong Y., Jiang P. et al. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 12. P. 6451. https://doi.org/10.1021/acsami.5b00023
  52. 52. Liang X., Han L. // Adv. Funct. Mater. 2020. V. 30. № 28. https://doi.org/10.1002/adfm.202001933
  53. 53. Aggarwal P., Rana J.S., Chitkara M. et al. // J. Clust. Sci. 2024. V. 35. № 6. P. 2093. https://doi.org/10.1007/s10876-024-02646-5
  54. 54. Ray C., Dutta S., Sarkar S. et al. // J. Mater. Chem. B. 2014. V. 2.№ 36. P. 6097. https://doi.org/10.1039/C4TB00968A
  55. 55. Liu P., Liang M., Liu Z. et al. // Nanoscale. 2024. V. 16. №2. P. 913. https://doi.org/10.1039/D3NR04336C
  56. 56. Sobanska K., Pietrzyk P., Sojka Z. // ACS Catal. 2017. V. 7. № 4. P. 2935. https://doi.org/10.1021/acscatal.7b00189
  57. 57. Sommers J.A., Hutchison D.C., Martin N.P. et al. // Inorg. Chem. 2021. V. 60. № 3. P. 1631. https://doi.org/10.1021/acs.inorgchem.0c03128
  58. 58. Aoto H., Matsui K., Sakai Y. et al. // J. Mol. Catal. A: Chem. 2014. V. 394. P. 224. https://doi.org/10.1016/j.molcata.2014.07.020
  59. 59. Moons J., de Azambuja F., Mihailovic J. et al. // Angew. Chem. Int. Ed. 2020. V. 59. № 23. P. 9094. https://doi.org/10.1002/anie.202001036
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library