- PII
- 10.31857/S0044457X24120092-1
- DOI
- 10.31857/S0044457X24120092
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 12
- Pages
- 1763-1773
- Abstract
- A method for obtaining aqueous sols of nanocrystalline hafnium dioxide (with hydrodynamic diameter 20-35 nm) stabilised by lactic acid (lactate ions) and characterised by high colloidal stability (zeta-potential -29 mV) has been developed. The method is based on the hydrothermal treatment of a previously obtained complex compound of hafnium with lactic acid in the presence of urea at temperatures of 180 and 220 degrees Celsius for 48 and 96 h. By chemiluminescence analysis in the model reaction of luminol oxidation it was found that nanocrystalline hafnium oxide in the composition of sols exhibits dose-dependent pro-oxidant activity towards hydrogen peroxide and thus exhibits peroxidase-like properties.
- Keywords
- наноматериалы нанозимы коллоидные растворы диоксид гафния хемилюминесценция прооксидант пероксидазоподобная активность
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Ramadoss A., Krishnamoorthy K., Kim S.J. // Mater. Res. Bull. 2012. V. 47. № 9. P. 2680. https://doi.org/10.1016/j.materresbull.2012.05.051
- 2. Wang J., Li H.P., Stevens R. // J. Mater. Sci. 1992. V. 27. № 20. P. 5397. https://doi.org/10.1007/BF00541601
- 3. Robertson J. // Eur. Phys. J. - Appl. Phys. 2004. V 28. P. 265. https://api.semanticscholar.org/CorpusID:28017611
- 4. Bersuker G., Gilmer D.C., Veksler D. et al. // Tech. Dig. — Int. Electron Devices Meet. 2010. P. 456. https://doi.org/10.1109/IEDM.2010.5703394
- 5. Yu S., Guan X., Wong H.S.P. // Appl. Phys. Lett. 2011. V. 99. № 6. P. 2011. https://doi.org/10.1063/1.3624472
- 6. Lee H.Y., Chen Y.S., Chen P.S. et al. // IEEE Int. 2010. V. 55. № 1. P. 19.7.1. https://doi.org/10.1109/IEDM.2010.5703395
- 7. Al-Kuhaili M.F., Durrani S.M.A., Bakhtiari I.A. et al. // Mater. Chem. Phys. 2011. V. 126. № 3. P. 515. https://doi.org/10.1016/j.matchemphys.2011.01.036
- 8. Wang Y., Lin Z., Cheng X. et al. // Appl. Surf. Sci. 2004. V 228. № 1-4. P. 93. https://doi.org/10.1016/j.apsusc.2003.12.028
- 9. Adam J., Rogers M.D. // Acta Crystallogr. 1959. V. 12. № 11. P. 951. https://doi.org/10.1107/s0365110x59002742
- 10. Curtis C.E., Doney L.M., Johnson J.R. // J. Am. Ceram. Soc. 1954. V. 37.№ 10. P. 458. https://doi.org/10.1111/j.1151-2916.1954.tb13977.x
- 11. Ruh R., Garrett H.J., Domagala R.F. et al. // J. Am. Ceram. Soc. 1968. V. 51.№ 1. P. 23.
- 12. Guskov V.N., Gagarin P.G., Guskov A.V. et al. // Russ. J. Inorg. Chem. 2019. V. 64.№ 11. P. 1436. https://doi.org/10.1134/S0036023619110068
- 13. Folomeikin Y.I., Karachevtsev F.N., Stolyarova V.L. // Russ. J. Inorg. Chem. 2019. V. 64. № 7. P. 934. https://doi.org/10.1134/S0036023619070088
- 14. Chaubey G.S., Yao Y., Makongo J.P.A. et al. // RSC Adv. 2012. V. 2. № 24. P. 9207. https://doi.org/10.1039/c2ra21003g
- 15. Giacobbe J., Dunning D.N. // Nucl. Sci. Eng. 1958. V. 4. № 3. P. 467. https://doi.org/10.13182/nse58-a25543
- 16. Cunningham G.W., Foulds A.K., Keller D.L. et al. // Nucl. Sci. Eng. 1958. V. 4. № 3. P. 449. https://doi.org/10.13182/nse58-a25541
- 17. Field J.A., Luna-Velasco A., Boitano S.A. et al. // Chemosphere. 2011. V. 84.№ 10. P. 1401. https://doi.org/10.1016/j.chemosphere.2011.04.067
- 18. Bagley A.F., Ludmir E.B., Maitra A. et al. // Clin. Transl. Radiat. Oncol. 2022. V. 33. P. 66. https://doi.org/10.1016/j.ctro.2021.12.012
- 19. Maggiorella L., Barouch G., Devaux C. et al. // Futur. Oncol. 2012. V. 8. № 9. P. 1167. https://doi.org/10.2217/fon.12.96
- 20. Shcherbakov A.B., Ivanov V.K., Zholobak N.M. et al. // Biophysics (Oxf). 2011. V. 56.№6. P. 987. https://doi.org/10.1134/S0006350911060170
- 21. Shcherbakov A.B., Zholobak N.M., Spivak N.Y. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 13. P. 1556. https://doi.org/10.1134/S003602361413004X
- 22. Ivanova O.S., Shekunova T.O., Ivanov V.K. et al. // Dokl. Chem. 2011. V. 437. № 2. P. 103. https://doi.org/10.1134/S0012500811040070
- 23. Ivanov V.K., Polezhaeva O.S., Shaporev A.S. et al. // Russ. J. Inorg. Chem. 2010. V. 55.№ 3. P. 328. https://doi.org/10.1134/S0036023610030046
- 24. Stefanic G., Music S., Molcanov K. // J. Alloys Compd. 2005. V 387. № 1-2. P. 300. https://doi.org/10.1016/j.jallcom.2004.06.064
- 25. De Roo J., De Keukeleere K., Feys J. et al. // J. Nanoparticle Res. 2013. V. 15. № 7. https://doi.org/10.1007/s11051-013-1778-z
- 26. Tirosh E., Markovich G. // Adv. Mater. 2007. V. 19. № 18. P. 2608. https://doi.org/10.1002/adma.200602222
- 27. Qi J., Zhou X. // Colloids Surf. A Physicochem. Eng. Asp. 2015. V. 487. P. 26. https://doi.org/10.1016/j.colsurfa.2015.09.037
- 28. Filippova A.D., Baranchikov A.E., Ivanov V.K. // Colloid J. 2023. V. 85. № 5. P. 782. https://doi.org/10.1134/S1061933X23600653
- 29. Elmowafy E.M., Tiboni M., Soliman M.E. // Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. Singapore: Springer, 2019. https://doi.org/10.1007/s40005-019-00439-x
- 30. Yapryntsev A.D., Baranchikov A.E., Churakov A.V. et al. // RSC Adv. 2021. V. 11.№ 48. P. 30195. https://doi.org/10.1039/d_1ra05923h
- 31. Dhup S., Kumar Dadhich R., Ettore Porporato P. et al. // Curr. Pharm. Des. 2012. V. 18.№ 10. P. 1319. https://doi.org/10.2174/138161212799504902
- 32. Apostolova P., Pearce E.L. // Trends Immunol. 2022. V. 43. № 12. P. 969. https://doi.org/10.1016/j.it.2022.10.005
- 33. Hirschhaeuser F., Sattler U.G.A., Mueller-Klieser W. // Cancer Res. 2011. V. 71.№ 22. P. 6921. https://doi.org/10.1158/0008-5472.CAN-11-1457
- 34. Pohanka M. // Biomed Res. Int. 2020. V. 2020. https://doi.org/10.1155/2020/3419034
- 35. Kakihana M., Kobayashi M., Tomita K. et al. // Bull. Chem. Soc. Jpn. 2010. V. 83.№ 11. P. 1285. https://doi.org/10.1246/bcsj.20100103
- 36. Rose J., De Bruin T.J.M., Chauveteau G. et al. // J. Phys. Chem. B. 2003. V. 107. № 13. P. 2910. https://doi.org/10.1021/jp027114c
- 37. Meskin P.E., Gavrilov A.I., Maksimov V.D. et al. // Russ. J. Inorg. Chem. 2007. V. 52. № 11. P. 1648. https://doi.org/10.1134/S0036023607110022
- 38. Ivanov V.K., Baranchikov A.E., Tret’yakov Y.D. // Russ. J. Inorg. Chem. 2010. V. 55. № 5. P. 665. https://doi.org/10.1134/S0036023610050037
- 39. Hudak B.M., Depner S.W., Waetzig G.R. et al. // Nat. Commun. 2017. V. 8. № May. P. 1. https://doi.org/10.1038/ncomms15316
- 40. Willard H.H., Tang N.K. // J. Am. Chem. Soc. 1937. V. 59. № 7. P. 1190. https://doi.org/10.1021/ja01286a010
- 41. Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. // Russ. Chem. Rev. 2020. V. 89. № 6. P. 629. https://doi.org/10.1070/RCR4920
- 42. Таран Г.С., Баранчиков А.Е., Иванова О.С. и др. // Журн. неорган. химии. 2020. Т. 65. № 6. С. 725. https://doi.org/10.31857/s0044457x20060239
- 43. Baranchikov A.E., Sozarukova M.M., Mikheev I.V. etal.//NewJ. Chem. 2023. V. 47. № 44. P. 20388. https://doi.org/10.1039/D3NJ03728B
- 44. Filippova A.D., Sozarukova M.M., Baranchikov A.E. et al. // Molecules. 2023. V. 28. № 9. https://doi.org/10.3390/molecules28093811
- 45. Teplonogova M.A., Volostnykh M.V., Yapryntsev A.D. et al. // Int. J. Mol. Sci. 2022. V. 23. № 23. https://doi.org/10.3390/ijms232315373
- 46. Qin L., Hu Y., Wei H. // Nanozymes: Preparation and Characterization. 2020. P. 79. https://doi.org/10.1007/978-981-15-1490-6_4
- 47. Vladimirov Y.A., Proskurnina E.V. // Biochem. 2009. V. 74. № 13. P. 1545. https://doi.org/10.1134/S0006297909130082
- 48. Deng M., Xu S., Chen F. // Anal. Methods. 2014. V. 6. № 9. P. 3117. https://doi.org/10.1039/c3ay42135j
- 49. Li C., Shi X., Shen Q. et al. //J. Nanomater. 2018. V. 2018. https://doi.org/10.1155/2018/4857461
- 50. Giussani A., Farahani P., Martnez-Munoz D. et al. // Chem. -AEur.J. 2019. V. 25.№ 20. P. 5202. https://doi.org/10.1002/chem.201805918
- 51. Zhao H., Dong Y., Jiang P. et al. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 12. P. 6451. https://doi.org/10.1021/acsami.5b00023
- 52. Liang X., Han L. // Adv. Funct. Mater. 2020. V. 30. № 28. https://doi.org/10.1002/adfm.202001933
- 53. Aggarwal P., Rana J.S., Chitkara M. et al. // J. Clust. Sci. 2024. V. 35. № 6. P. 2093. https://doi.org/10.1007/s10876-024-02646-5
- 54. Ray C., Dutta S., Sarkar S. et al. // J. Mater. Chem. B. 2014. V. 2.№ 36. P. 6097. https://doi.org/10.1039/C4TB00968A
- 55. Liu P., Liang M., Liu Z. et al. // Nanoscale. 2024. V. 16. №2. P. 913. https://doi.org/10.1039/D3NR04336C
- 56. Sobanska K., Pietrzyk P., Sojka Z. // ACS Catal. 2017. V. 7. № 4. P. 2935. https://doi.org/10.1021/acscatal.7b00189
- 57. Sommers J.A., Hutchison D.C., Martin N.P. et al. // Inorg. Chem. 2021. V. 60. № 3. P. 1631. https://doi.org/10.1021/acs.inorgchem.0c03128
- 58. Aoto H., Matsui K., Sakai Y. et al. // J. Mol. Catal. A: Chem. 2014. V. 394. P. 224. https://doi.org/10.1016/j.molcata.2014.07.020
- 59. Moons J., de Azambuja F., Mihailovic J. et al. // Angew. Chem. Int. Ed. 2020. V. 59. № 23. P. 9094. https://doi.org/10.1002/anie.202001036