- PII
- 10.31857/S0044457X24120074-1
- DOI
- 10.31857/S0044457X24120074
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 12
- Pages
- 1743-1751
- Abstract
- The crystal structure of ternary intermetallic compounds τ1 in the Pd-(Cu, Ag, Au)-Sn systems has been determined. It has been established that in the silver and gold systems they crystallize in a body-centered tetragonal cell with an ordering of atoms corresponding to the Al3Ti structural type, and in the copper system for the τ1 phase the VRh2Sn structure is formed, which is its additionally ordered derivative. The data available in the literature and obtained by the authors on the structures of binary and ternary compounds, which are ordered derivatives of a Cu-type structure, in Pd systems with group 11 elements and non-transition metals In and Sn are generalized and analyzed. It has been shown that they are formed at certain values of electron concentration (e/a): with the AuCu or Al3Zr structure types at e/a = 0.75, with the Al3Ti and VRh2Sn structure type at e/a from 0.8 to 1, and with the AuCu3 structure type at e/a = 1. The size factor affects the direction and extent of phase homogeneity regions.
- Keywords
- интерметаллиды палладия кристаллическая структура электронная концентрация размерный фактор
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Wencka M., Hahne M., Kocjan A. et al. // Intermetallics. 2014. V. 55. P. 56. https://doi.org/10.1016/j.intermet.2014.07.007
- 2. Акимова О.В., Овчаров А.В., Горбунов С.В. // Неорган. материалы. 2023. V. 59. № 11. P. 1326. https://doi.org/10.31857/S0002337X23110015
- 3. Бумагин Н.А. // Журн. общ. химии. 2022. V. 92. № 1. Р. 102. https://doi.org/10.31857/S0044460X22010115
- 4. Kareva M.A., Kabanova E.G., Kuznetsov V.N. et al. // Moscow Univ. Bull., Ser. Khim. 2011. V. 66. № 6. Р. 381. https://doi.org/10.3103/S0027131411060046
- 5. Kareva M.A., Kabanova E.G., Kalmykov K.B. et al. // J. Phase Equilib. Diffus. 2014. V. 35. № 4. Р. 413. https://doi.org/10.1007/s11669-014-0299-5
- 6. Ptashkina E.A., Kabanova E.G., Yatsenko A.V. et al. // J. Alloys Compd. 2019. V. 776. P. 620. https://doi.org/10.1016/j.jallcom.2018.10.282
- 7. Ptashkina E.A., Kabanova E.G., Kalmykov K.B. et al. // J. Alloys Compd. 2020. V. 845. P. 156166. https://doi.org/10.1016/j.jallcom.2020.156166
- 8. Pavlenko A.S., Ptashkina E.A., Zhmurko G.P. et al. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 42. https://doi.org/10.1134/S0036024423010235
- 9. Zemanova A., Semenova O., Kroupa A. et al. // Monatsh. Chem. 2005. V. 136. № 11. P. 1931. https://doi.org/10.1007/s00706-005-0384-x
- 10. Zemanova A., Semenova O., Kroupa A. et al. // Intermetallics. 2007. V. 15. P. 77. https://doi.org/10.1016/j.intermet.2006.03.002
- 11. Pavlenko A.S., Ptashkina E.A., Kabanova E.G. et al. // Calphad. 2023. V. 81. P. 102533. http://doi.org/10.1016/j.calphad.2023.102533
- 12. Bhan S., Schubert K. // J. Less Common. Met. 1969. V. 17. P. 73. http://doi.org/10.1016/0022-5088 (69)90038-1
- 13. Kohlmann H., Ritter C. // Z. Naturforsch., B: Chem. Sci. 2007. V. 62. P. 929. http://doi.org/10.1515/znb-2007-0709
- 14. Kohlmann H., Ritter C. // Z. Anorg. Allg. Chem. 2009. V. 635. P. 1573. http://doi.org/10.1002/zaac.200900053
- 15. Hellner E., Laves F. // Z. Naturforsch. A. 1947. V. 2. № 3. P. 177. https://doi.org/10.1515/zna-1947-0310
- 16. Prince E. International Tables for Crystallography. V. C: Mathematical, physical and chemical tables. Dordrecht: Kluwer Academic Publ., 2004.
- 17. Schubert K. // Int. J. Mater. Res. 1952. V. 43. № 1. P. 1. https://doi.org/10.1515/ijmr-1952-430101
- 18. Schubert K. // Int. J. Mater. Res. 1955. V. 46. № 1. P. 43. https://doi.org/10.1515/ijmr-1955-460109
- 19. Roy N., Kuila Harshit S.K., Pramanik P. et al. // Eur. J. Inorg. Chem. 2022. V. 26. P. 202200309. https://doi.org/10.1002/ejic.202200309
- 20. Amundsen M., Pike N.A., L0vvik O.M. et al. // Materialia. 2022. V. 24. P. 101461. https://doi.org/10.1016/j.mtla.2022.101461
- 21. STOE WinXPOW. Version 2.24 [электронный ресурс]. Software package (10.2 Mb). STOE & Cie GmbH: Darmstadt, 2009.
- 22. Rodriguez-Carvajal J. // Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France. 1990. P. 127.
- 23. Xu J.-H., Lin W., Freeman A.J. // Phys. Rev. B. 1993. V. 48. № 7. Р. 4276. https://doi.org/10.1103/PhysRevB.48.4276
- 24. Guo Sh., Ng Ch., Lu J. et al. // J. Appl. Phys. 2011. V. 109. № 10. P. 103505. https://doi.org/10.1063/1.3587228
- 25. Mizutani U. // MRS Bulletin. 2012. V. 37. № 2. P. 169. https://doi.org/10.1557/mrs.2012.45
- 26. Kohlmann H., Skripov A.V., Soloninin A.V. et al. // J. Solid State Chem. 2010. V. 183. № 2. P. 2461. http://doi.org/10.1016/j.jssc.2010.08.015
- 27. Пирсон У. Кристаллохимия и физика металлов и сплавов / Пер. с англ. канд. физ.-мат. наук С.Н. Горина. М.: Мир, 1977.
- 28. Pyykko P. // Chem. Soc. Rev. 2008. V. 37. P. 1967. http://doi.org/10.1039/b708613j