ОХНМЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

СТРОЕНИЕ И ТЕРМИЧЕСКОЕ ПОВЕДЕНИЕ ОКСОФТОРИДОЦИРКОНАТА КАЛИЯ K2Zr3OF12

Код статьи
10.31857/S0044457X24120063-1
DOI
10.31857/S0044457X24120063
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 69 / Номер выпуска 12
Страницы
1733-1742
Аннотация
Нагреванием водной суспензии KZrF5 получен оксофторидоцирконат состава K2Zr3OF12 и методами ДТА-ТГА, РФА, ИКи КР-спектроскопии изучено его строение и термическое разложение. При полном гидролитическом разложении K2Zr3OF12 при 620°C образуется преимущественно смесь моноклинных фаз K2ZrF6 и ZrO2 . Получены, систематизированы и проанализированы экспериментальные ИКи КР-спектры оксофторидоцирконата K2Zr3OF12 и продуктов его нагревания. На основании результатов квантово-химических расчетов проведено отнесение полос в экспериментальных спектрах.
Ключевые слова
комплексные фториды циркония оксофторидоцирконат калия колебательная спектроскопия
Дата публикации
17.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
11

Библиография

  1. 1. Koller D., Muller B.D. // Z. Anorg. Allg. Chem. 2002. V. 628. P. 575. https://doi.org/10.1002/1521-3749 (200203)628:3%3C575::AID-ZAAC575%3E3.0.CO;2-L
  2. 2. Mansouri I., Avignant D. //J. Solid State Chem. 1984. V. 51. P. 91. https://doi.org/10.1016/0022-4596 (84)90319-0
  3. 3. Войт Е.И., Диденко Н.А., Гайворонская К.А. // Опт. спектроскопия. 2018. Т. 124. № 3. С. 333. https://doi.org/10.21883//OS.2018.03.45654.26317
  4. 4. Saada M.A., Hemon-Ribaud A., Maisonneuve V. et al. // Acta Crystallogr., Sect. E. 2003. V. 59. P. i131. https://doi.org/10.1107/S1600536803018567
  5. 5. Underwood C.C. Hydrothermal chemistry, crystal structures, and spectroscopy of novel fluorides and borates, All Dissertations 1145. 2013. P. 199. https://tigerprints.clemson.edu/all_dissertations/1145
  6. 6. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
  7. 7. Underwood C.C., McMillen C.D., Kolis J.W. // J. Chem. Crystallogr. 2015. V. 45. P. 445. https://doi.org/10.1007/s10870-015-0613-z
  8. 8. Burns J.H., Ellison R.D., Levy H.A. // Acta Crystallogr., Sect. B. 1968. V. 24. № 2. P. 230. https://doi.org/10.1107/S0567740868002013
  9. 9. Zhurova E.A., Maximov B.A., Simonov V.I. et al. // Kristallografiya. 1996. V. 41. P. 433. http://dx.doi.org/10.1134/1.170440
  10. 10. Avignant D., Mansouri I., Cousseins J.C. et al. // Mater. Res. Bull. 1982. V. 17. P. 1103.
  11. 11. Войт Е.И., Слободюк А.Б., Диденко Н.А. // Опт. спектроскопия. 2019. Т. 126. № 2. C. 147. https://doi.org/10.21883/OS.2019.02.47196.233-18
  12. 12. Войт Е.И., Диденко Н.А., Галкин К.Н. // Опт. спектроскопия. 2015. T. 118. № 1. C. 97. https://doi.org/10.7868/S0030403415010262
  13. 13. Dracopoulos V., Vagelatos J., Papatheodorou G.N. //J. Chem. Soc., Dalton Trans. 2001. V. 7. P. 1117. https://doi.org/10.1039/B008433F
  14. 14. Hruska B., Netriova Z., Vaskova Z. et al. // J. Alloys Compd. 2019. V. 791. P. 45. https://doi.org/10.1016/j.jallcom.2019.03.200
  15. 15. Давидович Р.Л., Кайдалова Т.А., Левчишина Т.Ф., Сергиенко В.И. Атлас инфракрасных спектров поглощения и рентгенометрических данных комплексных фторидов металлов IV и V групп. М.: Наука, 1972. C. 250.
  16. 16. Диденко Н.А., Войт Е.И. // Опт. спектроскопия. 2023. T. 131. № 3. C. 354. https://doi.org/10.21883/OS.2023.03.55385.449222
  17. 17. Li C., Wen T., Liu K. et al. // Inorg. Chem. 2021. V. 60. P. 14382. https://doi.org/10.1021/acs.inorgchem.1c02176
  18. 18. Chen X., Fu H., Wang C. //J. Mol. Liq. 2021. V. 342. P. 117476. https://doi.org/10.1016/j.molliq.2021.117476
  19. 19. Lin F.-Q., Dong W.-Sh., Liu C.-L. et al. // Colloids Surf., A: Physicochem. Eng. Aspects. 2009. V. 335 P. 1. https://doi.org/10.1016/j.colsurfa.2008.10.014
  20. 20. Годнева М.М., Мотов Д.Л. Химия подгруппы титана. Сульфаты, фториды, фторосульфаты из неводных сред. М.: Наука, 2006. C. 302.
  21. 21. Годнева М.М., Мотов Д.Л. Химия фтористых соединений циркония и гафния. Л.: Наука, 1971. C. 107.
  22. 22. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. P. 1347. https://doi.org/10.1002/jcc.540141112
  23. 23. Leblanc M., Maisonneuve V., Tressaud A. // Chem. Rev. 2015. V. 115. № 2. P. 1191. https://doi.org/10.1021/cr500173c
  24. 24. Макатун В.Н. Химия неорганических гидратов. Минск: Наука и техника, 1985. C. 246.
  25. 25. Seki T., Chiang K.Y., Yu C.X. et al. //J. Phys. Chem. Lett. 2020. V. 11. № 19. P. 8459. https://doi.org/10.1021/acs.jpclett.0c01259
  26. 26. Sengupta A.K., Bhattacharyya U. //J. Fluorine Chem. 1990. V. 46. № 2. P. 229. https://doi.org/10.1016/S0022-1139 (00)80992-6
  27. 27. Войт Е.И., Диденко Н.А. // Сб. тр. XX Междунар. конф. “Спектроскопия координационных соединений”. Туапсе, 2024 г. С. 85.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека