- PII
- 10.31857/S0044457X24120035-1
- DOI
- 10.31857/S0044457X24120035
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 12
- Pages
- 1690-1704
- Abstract
- The influence of hydrothermal synthesis parameters on the crystal structure and morphology of MoS2 particles has been shown. The results of synchronous thermal analysis showed that at the concentration of molybdenum cations of 0.05 mol/L, the increase in the duration of hydrothermal treatment leads to a decrease in the total mass loss (Δm), and the increase in c(Mo), on the contrary, results in a significant increase in the total Δm value. The dependence of the exo-effect maximum position, related to the MoS2 oxidation with the formation of MoO3, on the synthesis conditions was determined. According to X-ray diffraction analysis (XRD) data, the 1T-MoS2 phase is formed at minimum c(Mo) and duration of heat treatment. Increasing the time duration leads to the transformation of 1T-phase into 2H-MoS2. With increasing c(Mo), the 2H-phase transforms to 1T-MoS2 and further to 1T/2H-MoS2. The transformation of MoS2 structure was also analyzed by Raman spectroscopy. From the results of scanning electron microscopy (SEM), all samples represent flower-like nanostructures consisting of twisted nanosheets. According to transmission electron microscopy data, individual nanosheets with a length of 50-500 nm are formed after delamination of molybdenum disulfide structures. The microstructure of the obtained MoS2 film was studied by SEM and atomic force microscopy. Analysis of the film surface by Kelvin-probe force microscopy allows to establish the material has high electrical conductivity, and the work function value of the film surface was calculated.
- Keywords
- гидротермальный синтез дисульфид молибдена нанолисты иерархические структуры пленки метод вращения подложки электрод суперконденсатор
- Date of publication
- 15.12.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 54
References
- 1. Muhammad Saqib Q., Mannan A., Noman M. et al. // Chem. Eng. J. 2024. V. 490. P. 151857. https://doi.org/10.1016/j.cej.2024.151857
- 2. Bu F., Zhou W., Xu Y. et al. // npj Flex. Electron. 2020. V. 4. № 1. P. 31. https://doi.org/10.1038/s41528-020-00093-6
- 3. Simonenko T.L., Simonenko N.P., Gorobtsov P.Y. et al. // Materials (Basel). 2023. V. 16. № 18. P. 6133. https://doi.org/10.3390/ma16186133
- 4. Sun X., Chen K., Liang F. et al. // Front. Chem. 2022. V. 9. https://doi.org/10.3389/fchem.2021.807500
- 5. Xie Y., Zhang H., Hu H. et al. // Chem. A Eur. J. 2024. V. 30. № 21. https://doi.org/10.1002/chem.202304160
- 6. Khan Y., Ostfeld A.E., Lochner C.M. et al. // Adv. Mater. 2016. V. 28. № 22. P. 4373. https://doi.org/10.1002/adma.201504366
- 7. Lu Y., Lou Z., Jiang K. et al. // Mater. Today Nano. 2019. V. 8. P. 100050. https://doi.org/10.1016/j.mtnano.2019.100050
- 8. Jia R., Shen G., Qu F. et al. // Energy Storage Mater. 2020. V. 27. P. 169. https://doi.org/10.1016/j.ensm.2020.01.030
- 9. Hepel M. // Electrochem. Sci. Adv. 2023. V. 3. № 3. https://doi.org/10.1002/elsa.202100222
- 10. Han X., Wu X., Zhao L. et al. // Microsystems Nanoeng. 2024. V. 10. № 1. P. 107. https://doi.org/10.1038/s41378-024-00742-0
- 11. Reenu, Sonia, Phor L. et al. // J. Energy Storage. 2024. V. 84. P. 110698. https://doi.org/10.1016/j.est.2024.110698
- 12. Czagany M., Hompoth S., Keshri A.K. et al. // Materials (Basel). 2024. V. 17. № 3. P. 702. https://doi.org/10.3390/ma17030702
- 13. Das H.T., Dutta S., T. E.B. et al. // Handb. Biodegrad. Mater. Springer International Publishing. Cham, 2023. P. 1569. https://doi.org/10.1007/978-3-031-09710-2_41
- 14. Forouzandeh P., Kumaravel V., Pillai S.C. // Catalysts. 2020. V. 10. № 9. P. 969. https://doi.org/10.3390/catal10090969
- 15. Choi W., Choudhary N., Han G.H. et al. // Mater. Today. 2017. V. 20. № 3. P. 116. https://doi.org/10.1016/j.mattod.2016.10.002
- 16. Tao H., Fan Q., Ma T. et al. // Prog. Mater. Sci. 2020. V. 111. P. 100637. https://doi.org/10.1016/j.pmatsci.2020.100637
- 17. Kumar P., Abuhimd H., Wahyudi W. et al. // ECS J. Solid State Sci. Technol. 2016. V. 5. № 11. P. Q3021. https://doi.org/10.1149/2.0051611jss
- 18. Joseph N., Shafi P.M., Bose A.C. // Energy & Fuels. 2020. V. 34. № 6. P. 6558. https://doi.org/10.1021/acs.energyfuels.0c00430
- 19. Mohan M., Shetti N.P., Aminabhavi T.M. // Mater. Today Chem. 2023. V. 27. P. 101333. https://doi.org/10.1016/j.mtchem.2022.101333
- 20. Al-Ghiffari A.D., Ludin N.A., Davies M.L. et al. // Mater. Today Commun. 2022. V. 32. P. 104078. https://doi.org/10.1016/j.mtcomm.2022.104078
- 21. Hu T., Zhang R., Li J.-P. et al. // Chip. 2022. V. 1. № 3. P. 100017. https://doi.org/10.1016/j.chip.2022.100017
- 22. Ji S., Bae S., Hu L. et al. // Adv. Mater. 2024. V. 36. № 2. https://doi.org/10.1002/adma.202309531
- 23. Yin Z., Li H., Li H. et al. // ACS Nano. 2012. V. 6. № 1. P. 74. https://doi.org/10.1021/nn2024557
- 24. Li H., Wu J., Yin Z. et al. // Acc. Chem. Res. 2014. V. 47. № 4. P. 1067. https://doi.org/10.1021/ar4002312
- 25. Cantarella M., Gorrasi G., Di Mauro A. et al. // Sci. Rep. 2019. V. 9. № 1. P. 974. https://doi.org/10.1038/s41598-018-37798-8
- 26. Simonenko T.L., Simonenko N.P., Zemlyanukhin A.A. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 12. P. 1875. https://doi.org/10.1134/S003602362360212X
- 27. Li J., Listwan A., Liang J. et al. // Chem. Eng. J. 2021. V. 422. P. 130100. https://doi.org/10.1016/j.cej.2021.130100
- 28. Wang T., Guo J., Zhang Y. et al. // Cryst. Growth Des. 2024. V. 24. № 7. P. 2755. https://doi.org/10.1021/acs.cgd.3c01369
- 29. Cadot S., Renault O., Fregnaux M. et al. // Nanoscale. 2017. V. 9. № 2. P. 538. https://doi.org/10.1039/C6NR06021H
- 30. Park C., Shim G.W., Hong W. et al. // ACS Appl. Nano Mater. 2023. V. 6. № 10. P. 8981. https://doi.org/10.1021/acsanm.3c01622
- 31. Simonenko T.L., Bocharova V.A., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 4. P. 459. https://doi.org/10.1134/S003602362004018X
- 32. Simonenko T.L., Bocharova V.A., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 9. P. 1292. https://doi.org/10.1134/S0036023620090193
- 33. Simonenko T.L., Dudorova D.A., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 12. P. 1865. https://doi.org/10.1134/S0036023623602131
- 34. Han J.T., Jang J.I., Kim H. et al. // Sci. Rep. 2014. V. 4. № 1. P. 5133. https://doi.org/10.1038/srep05133
- 35. Lukianov M.Y., Rubekina A.A., Bondareva J.V. et al. // Nanomaterials. 2023. V. 13. № 13. P. 1982. https://doi.org/10.3390/nano13131982
- 36. Qiu H., Zheng H., Jin Y. et al. // Ionics (Kiel). 2020. V. 26. № 11. P. 5543. https://doi.org/10.1007/s11581-020-03734-y
- 37. Yan H., Song P., Zhang S. et al. // RSC Adv. 2015. V. 5. № 89. P. 72728. https://doi.org/10.1039/C5RA13036K
- 38. Wang X., Li H., Li H. et al. // Adv. Funct. Mater. 2020. V. 30. № 15. https://doi.org/10.1002/adfm.201910302Reddy
- 39. Inta H., Biswas T., Ghosh S. et al. // ChemNanoMat. 2020. V. 6. № 4. P. 685. https://doi.org/10.1002/cnma.202000005
- 40. Zhao W., Liu X., Yang X. et al. // Nanomaterials. 2020. V. 10. № 6. P. 1124. https://doi.org/10.3390/nano10061124Feng
- 41. J., Fan Y., Zhao H. et al. // Brazilian J. Phys. 2021. V. 51. № 3. P. 493. https://doi.org/10.1007/s13538-021-00863-1Kaur
- 42. J., Gravagnuolo A.M., Maddalena P. et al. // RSC Adv. 2017. V. 7. № 36. P. 22400. https://doi.org/10.1039/C7RA01680HPierucci
- 43. D., Henck H., Naylor C.H. et al. // Sci. Rep. 2016. V. 6. № 1. P. 26656. https://doi.org/10.1038/srep26656
- 44. Yu H., Xu J., Liu Z. et al. // J. Mater. Sci. 2018. V. 53. № 21. P. 15271. https://doi.org/10.1007/s10853-018-2687-4
- 45. Shakya J., Kumar S., Kanjilal D. et al. // Sci. Rep. 2017. V. 7. № 1. P. 9576. https://doi.org/10.1038/s41598-017-09916-5
- 46. Zhou P., Song X., Yan X. et al. // Nanotechnology. 2016. V. 27. № 34. P. 344002. https://doi.org/10.1088/0957-4484/27/34/344002