- PII
- 10.31857/S0044457X24110128-1
- DOI
- 10.31857/S0044457X24110128
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 11
- Pages
- 1631-1642
- Abstract
- MAX phases of various compositions have recently found increasing application due to their multilayer structure and properties that are characteristic of ceramic materials and metals. Therefore, the development of easily scalable methods for obtaining these compounds characterized by increased phase purity is of great importance. Within the framework of the work the influence on the composition and properties of such MAX phase, as Ti2AlC, conditions of its preparation with the use of protective melt of salts (on the example of KBr), in particular, ratios ofinitial reagents (n(Ti) : n(Al) : n(C)), temperature and duration of heat treatment has been studied. It was found that at the temperature 1100∘C the highest yield of Ti2AlC (94.4%) can be obtained in the case of using the molar ratio n(Ti) : n(Al) : n(C) = 2 : 1.1 : 0.9. It is shown that the use of synthesis temperatures from 900 to 1100∘C changes the content of the target MAX phase insignificantly(from 94 to 96%), the maximum content of Ti2AlC was found in the case of obtaining a sampleat the temperature 1000∘C. The influence of synthesis temperature (900, 1100 and 1200∘C) on microstructure, thermal behavior in air current and the value of electron work function was alsostudied.
- Keywords
- МАХ-фаза синтез в расплаве солей окисление работа выхода электрона
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67.№5. P. 705. https://doi.org/ 10.1134/S0036023622050187
- 2. Haftani M., Saeedi Heydari M., Baharvandi H.R. et al. // Int. J. Refract. Met. Hard Mater. 2016. V. 61. P. 51. https://doi.org/ 10.1016/j.ijrmhm.2016.07.006
- 3. Tallman D.J., Anasori B., Barsoum M.W. // Mater. Res. Lett. 2013. V. 1.№3. P. 115. https://doi.org/ 10.1080/21663831.2013.806364
- 4. Elsenberg A., Busato M., Gartner F. et al. // J. Therm. Spray Technol. 2021. V. 30.№3. P. 617. https://doi.org/ 10.1007/s11666-020-01110-w
- 5. Poulou A., Mellan T.A., Finnis M.W. // Phys. Rev. Mater. 2021. V. 5.№3. P. 033608. https://doi.org/10.1103/PhysRevMaterials.5.033608
- 6. Aydinyan S. // Ceram. Int. 2024. V. 50.№7. P. 12263. https://doi.org/10.1016/j.ceramint.2024.01.130
- 7. Li Z., Zhang Y., Wang K. et al. // Corros. Sci. 2024. V. 228. P. 111820. https://doi.org/10.1016/j.corsci.2024.111820
- 8. Liu P.,Wang Z., Ye F. et al. // Composites Part B: Eng. 2024. V. 273. P. 111259. https://doi.org/10.1016/j.compositesb.2024.111259
- 9. Lee H., Kim S.Y., Lee Y. et al. // J. Am. Ceram. Soc. 2023. V. 106.№12. P. 7230. https://doi.org/10.1111/jace.19217
- 10. Simonenko T.L., Simonenko N.P., Gorobtsov P.Y. et al. // Materials (Basel). 2023. V. 16.№18. P. 6133. https://doi.org/10.3390/ma16186133
- 11. Bharti B., Kumar Y., Gupta M. et al. // ECS Trans. 2022. V. 107.№1. P. 1751. https://doi.org/10.1149/10701.1751ecst
- 12. Aslam M.K., Xu M. // Nanoscale. 2020. V. 12.№30. P. 15993. https://doi.org/10.1039/D0NR04111D
- 13. Cichero M.C., Zimnoch Dos Santos J.H. // Mater. Res. Found. 2019. V. 51. P. 1. https://doi.org/10.21741/9781644900253-1
- 14. Simonenko E.P., Simonenko N.P., Mokrushin A.S. et al. // Nanomaterials. 2023. V. 13.№5. P. 850. https://doi.org/10.3390/nano13050850
- 15. Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Materials (Basel). 2023. V. 16.№13. P. 4506. https://doi.org/10.3390/ma16134506
- 16. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1850. https://doi.org/10.1134/ S0036023622601222
- 17. Ganesh P.-S., Kim S.-Y. // J. Ind. Eng. Chem. 2022. V. 109. P. 52. https://doi.org/10.1016/j.jiec.2022.02.006
- 18. Sivasankarapillai V.S., Sharma T.S.K., Hwa K.-Y. et al. // ES Energy Environ. 2022. V. 15. P. 4. https://doi.org/10.30919/esee8c618
- 19. Alwarappan S., Nesakumar N., Sun D. et al. // Biosens. Bioelectron. 2022. V. 205. P. 113943. https://doi.org/10.1016/j.bios.2021.113943
- 20. Shah N., Wang X., Tian J. // Mater. Chem. Front. 2023. V. 7.№19. P. 4184. https://doi.org/10.1039/D3QM00216K
- 21. Li K., Zhang S., Li Y. et al. // Chinese J. Catal. 2021. V. 42.№1. P. 3. https://doi.org/10.1016/S1872-2067 (20)63630-0
- 22. Xie X., Zhang N. // Adv. Funct. Mater. 2020. V. 30. №36. P. 2002528. https://doi.org/10.1002/adfm.202002528
- 23. Liu Z., Sun C., Xu M. et al. // Mater. Lett. 2024.V. 365. P. 136437. https://doi.org/10.1016/j.matlet.2024.136437
- 24. Wang W., Xu J., Zuo J. et al. // Acta Metall. Sin. (English Lett). 2024. V. 37.№4. P. 739. https://doi.org/10.1007/s40195-023-01647-z
- 25. Perevislov S.N., Sokolova T.V., Stolyarova V.L. // Mater. Chem. Phys. 2021. V. 267. P. 124625. https://doi.org/10.1016/j.matchemphys.2021.124625
- 26. Hoffman E.N., Vinson D.W., Sindelar R.L. et al. // Nucl. Eng. Des. 2012. V. 244. P. 17. https://doi.org/10.1016/j.nucengdes.2011.12.009
- 27. Qiu B.,Wang J., Deng Y. et al. // Nucl. Eng. Technol. 2020. V. 52.№1. P. 1. https://doi.org/10.1016/j.net.2019.07.030
- 28. Azina C., Badie S., Litnovsky A. et al. // Sol. Energy Mater. Sol. Cells. 2023. V. 259. P. 112433. https://doi.org/10.1016/j.solmat.2023.112433
- 29. Ma H.-B., Xue J.-X., Zhai J.-H. et al. // Ceram. Int. 2020. V. 46.№9. P. 14269. https://doi.org/10.1016/j.ceramint.2020.02.155
- 30. Fitriani P., Yoon D.-H. // Ceram. Int. 2018. V. 44. №18. P. 22943. https://doi.org/10.1016/j.ceramint.2018.09.090
- 31. Fitriani P., Septiadi A., Hyuk J.D. et al. // J. Eur. Ceram. Soc. 2018. V. 38.№10. P. 3433. https://doi.org/10.1016/j.jeurceramsoc.2018.04.006
- 32. Septiadi A., Fitriani P., Sharma A.S. et al. // J. Korean Ceram. Soc. 2017. V. 54.№4. P. 340. https://doi.org/10.4191/kcers.2017.54.4.08
- 33. Jimenez C., Mergia K., Lagos M. et al. // J. Eur. Ceram. Soc. 2016. V. 36.№3. P. 443. https://doi.org/10.1016/j.jeurceramsoc.2015.09.038
- 34. Katoh Y., Snead L.L., Cheng T. et al. // J. Nucl. Mater. 2014. V. 448.№1–3. P. 497. https://doi.org/10.1016/j.jnucmat.2013.10.002
- 35. Wu J., Yan J., Peng H. et al. // J. Eur. Ceram. Soc. 2024. V. 44.№6. P. 3777. https://doi.org/10.1016/j.jeurceramsoc.2023.12.097
- 36. Chen W., Chen J., Zhu M. et al. // J. Eur. Ceram. Soc. 2021. V. 41.№13. P. 6248. https://doi.org/10.1016/j.jeurceramsoc.2021.06.037
- 37. Badie S., Dash A., Sohn Y.J. et al. // J. Am. Ceram. Soc. 2021. V. 104.№4. P. 1669. https://doi.org/10.1111/jace.17582
- 38. Cai L., Huang Z., Hu W. et al. // Int. J. Appl. Ceram. Technol. 2018. V. 15.№5. P. 1212. https://doi.org/ 10.1111/ijac.12902
- 39. Naik Parrikar P., Benitez R., Gao H. et al. // Exp. Mech. 2017. V. 57.№5. P. 675. https://doi.org/10.1007/s11340-017-0264-4
- 40. Bei G., Pedimonte B., Fey T. et al. // J. Am. Ceram. Soc. 2013. V. 96.№5. P. 1359. https://doi.org/10.1111/jace.12358
- 41. He G., Zhang Y., Yao P. et al. // J. Mater. Sci. Technol. 2023. V. 137. P. 91. https://doi.org/10.1016/j.jmst.2022.07.037
- 42. Rangaraj L., Kashimatt V., Pooja et al. // Int. J. Appl. Ceram. Technol. 2022. https://doi.org/10.1111/ijac.14064
- 43. Podhurska V.Y., Ostash O.P., Vasyliv B.D. et al. // Wear Resistance of Ti–Al–C MAX Phases-Based Materials for Pantographs Inserts of Electric Vehicles. 2021. Р. 607. https://doi.org/10.1007/978-3-030-51905-6_42
- 44. Liu Z., Yang J., Qian Y. et al. // Ceram. Int. 2020. V. 46.№14. P. 22854. https://doi.org/10.1016/j.ceramint.2020.06.055
- 45. Magnus C., Cooper D., Sharp J. et al. // Wear. 2019. V. 438–439. P. 203013. https://doi.org/10.1016/j.wear.2019.203013
- 46. Hu L., Kothalkar A., Proust G. et al. // J. Alloys Compd. 2014. V. 610. P. 635. https://doi.org/10.1016/j.jallcom.2014.04.224
- 47. Chen Y.L., Zhu X.Y., Lu P.J. et al. // Appl. Mech. Mater. 2014. V. 543–547. P. 3869. https://doi.org/10.4028/www.scientific.net/AMM.543547.3869
- 48. Liu X., Jia Q., Zhang S. et al. // Int. Mater. Rev. 2024. V. 69.№2. P. 107. https://doi.org/10.1177/09506608231219864
- 49. Galvin T., Hyatt N.C., Rainforth W.M. et al. // J. Eur. Ceram. Soc. 2018. V. 38.№14. P. 4585. https://doi.org/10.1016/j.jeurceramsoc.2018.06.034
- 50. Dash A., Va.en R., Guillon O. et al. // Nat. Mater. 2019. V. 18.№5. P. 465. https://doi.org/10.1038/s41563-019-0328-1
- 51. Luo W., Liu Y., Wang C. et al. // J. Mater. Chem. C. 2021. V. 9.№24. P. 7697. https://doi.org/10.1039/D1TC01338F
- 52. Nadimi H., Soltanieh M., Sarpoolaky H. // Ceram. Int. 2022. V. 48.№7. P. 9024. https://doi.org/10.1016/j.ceramint.2021.12.084
- 53. Liu Z., Xu J., Xi X. et al. // Ceram. Int. 2023. V. 49. №1. P. 168. https://doi.org/10.1016/j.ceramint.2022.08.325
- 54. Zhong Y., Liu Y., Jin N. et al. // J. Am. Ceram. Soc. 2023. V. 106.№9. P. 5567.https://doi.org/10.1111/jace.19178
- 55. Zhang Z., Zhou Y., Wu S. et al. // Ceram. Int. 2023. V. 49.№22. P. 36942. https://doi.org/10.1016/j.ceramint.2023.09.025
- 56. Tan Y., Xia Y., Teng Z. et al. // J. Eur. Ceram. Soc. 2021. V. 41.№8. P. 4658. https://doi.org/10.1016/j.jeurceramsoc.2021.03.027
- 57. Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Micromachines. 2023. V. 14.№4. P. 725. https://doi.org/10.3390/mi14040725
- 58. Liu A., Yang Q., Ren X. et al. // Ceram. Int. 2020. V. 46.№5. P. 6934. https://doi.org/10.1016/j.ceramint.2019.11.008
- 59. Roy C., Banerjee P., Bhattacharyya S. // J. Eur. Ceram. Soc. 2020. V. 40.№3. P. 923. https://doi.org/10.1016/j.jeurceramsoc.2019.10.020
- 60. Roy C., Banerjee P., Mondal S. et al. // Mater. Today Chem. 2022. V. 26. P. 101160. https://doi.org/10.1016/j.mtchem.2022.101160
- 61. Симоненко Е.П., Мокрушин А.С., Нагорнов И.А. и др. // Журн. неорган. химии. 2024. № 9.