RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

LOW-TEMPERATURE SYNTHESIS OF HIGHLY DISPERSED BARIUM ALUMINATE

PII
10.31857/S0044457X24110026-1
DOI
10.31857/S0044457X24110026
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 11
Pages
1514-1521
Abstract
A new approach has been developed for the low-temperature synthesis of highly dispersed barium aluminate of vermicular morphology with specified characteristics (bulk density from 0.015 g/cm3, average particle size in the range of 15-87 nm). The synthesis technique includes sequential heat treatment up to 1200∘C of a concentrated aqueous solution of BaCl2, Al(NO3)3, (NH2)2CO and C6H8O7. Using physico-chemical research methods: IR spectroscopy, X-ray phase analysis, transmission and scanning electron microscopy, as well as chemical analysis, the main stages of the synthesis of BaAl2O4 are characterized.
Keywords
наноразмерный BaAlO термическая обработка насыпная плотность вермикулярная морфология
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Wang Z., Wang Y., Subramanian M.A. et al. // Prog. Solid State Chem. 2022. V. 68.№100379. https://doi.org/10.1016/j.progsolidstchem.2022.100379
  2. 2. Reza Rezaie M., Reza Rezaie H., Naghizadeh R. // Ceram. Int. 2009. V. 35. P. 2235. https://doi.org/10.1016/j.ceramint.2008.12.009
  3. 3. Grigorovich K.V., Demin K.Y., Arsenkin A.M. et al. // Russ. Metall. 2011. V. 9. P. 912. https://doi.org/10.1134/S0036029511090126
  4. 4. Pollmann H. // Rev. Mineral. Geochem. 2012. V. 74. P. 1. https://doi.org/10.2138/rmg.2012.74.1
  5. 5. Djuri˘ic B., Pickering S., Mcgarry D. // J. Mater. Sci. 1999. V. 34. P. 2685. https://doi.org/10.1023/a:1004625405083
  6. 6. Chen G. // J. Alloys Compd. 2006. V. 416. № 1–2. P. 279. https://doi.org/10.1016/j.jallcom.2005.08.059
  7. 7. Seyidoglu T. // Open Ceram. 2023. V. 16. P. 100491. https://doi.org/10.1016/j.oceram.2023.100491
  8. 8. Mohapatra M., Pattanaik D.M., Anand S. et al. // Ceram. Int. 2007. V. 33.№4. P. 531. https://doi.org/10.1016/j.ceramint.2005.10.019
  9. 9. Singh V., Natarajan V., Kim D.-K. // Radiat. Eff. Defects Solids. 2008. V. 163.№3. P. 199. https://doi.org/10.1080/10420150701365854
  10. 10. Yue Z., Zhong M., Ma H. et al. // J. Shanghai University. 2008. V. 12. P. 216. https://doi.org/10.1007/s11741-008-0306-1
  11. 11. Zhuzhgov A.V., Kruglyakov V.Y., Suprun E.A. et al. // Russ. J. Appl. Chem. 2022. V. 95. P. 512. https://doi.org/10.1134/S1070427222040061
  12. 12. Torrez-Herrera J.J., Korili S.A., Gil A. // Catal. Rev. 2022. V. 64.№3. P. 592. https://doi.org/10.1080/01614940.2020.1831756
  13. 13. Rojas-Hernandez R.E., Rubio-Marcos F., Rodriguez M.A. et al. // Renew. Sust. Energ. Rev. 2018. V. 81. P. 2759. https://doi.org/10.1016/j.rser.2017.06.081
  14. 14. Su Y., Chen C., Wang J. et al. // Ceram. Int. 2024. V. 50.№11. P. 18169. https://doi.org/10.1016/j.ceramint.2024.02.300
  15. 15. Efimov A.A., Lizunova A.A., Volkov I.A. et al. // J. Phys.: Conf. Ser. 2016. V. 741. P. 012035. https://doi.org/10.1088/1742-6596/741/1/012035
  16. 16. Malwal D., Packirisamy G. // Synthesis of Inorganic Nanomaterials. 2018. P. 255. https://doi.org/10.1016/B978-0-08-101975-7.00010-5
  17. 17. Kumar A., Dixit C.K. // Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. 2017. P. 43. https://doi.org/10.1016/B978-0-08-100557-6.00003-1
  18. 18. Benourdja S., Kaynar Umit H., Ayvacikli M. et al. // Appl. Radiat. Isot. 2018. V. 139. P. 34. https://doi.org/10.1016/j.apradiso.2018.04.023
  19. 19. Lephoto M.A., Ntwaeaborwa O.M., Pitale S.S. et al. // Phys. B: Condens. Matter. 2012. V. 407. № 10. P. 1603. https://doi.org/10.1016/j.physb.2011.09.096
  20. 20. Kozerozhets I., Semenov E., Kozlova L. et al. // Mater. Chem. Phys. 2023. V. 309. P. 128387. https://doi.org/10.1016/j.matchemphys.2023.128387
  21. 21. Ianos R., Lazau R., Boruntea R.C. // Ceram. Int. 2015. V. 41.№2. P. 3186. https://doi.org/10.1016/j.ceramint.2014.10.171
  22. 22. Kozerozhets I.V., Semenov E.A., Avdeeva V.V. et al. // Ceram. Int. 2023. V. 49.№18. P. 30381. https://doi.org/10.1016/j.ceramint.2023.06.300
  23. 23. Kozlova L.O., Ioni Yu.V., Son A.G. et al. // Russ. J. Inorg. Chem. 2023. V.68. P. 1744. https://doi.org/10.1134/S0036023623602374
  24. 24. Perier-Camby L., Thomas G. // Solid State Ionics. 1993. V. 63–65. P. 128. https://doi.org/10.1016/0167-2738 (93)90095-K
  25. 25. Panasyuk G.P., Luchkov I.V., Kozerozhets I.V. et al. // Inorg. Mater. 2013. V. 49. P. 899. https://doi.org/10.1134/S0020168513090136
  26. 26. Panasyuk G.P., Azarova L.A., Belan V.N. et al. // Theor. Found. Chem. Eng. 2018. V. 52. P. 879. https://doi.org/10.1134/S0040579518050202
  27. 27. Селюнина Л.А., Мишенина Л.Н., Кузнецова Е.В. и др. // Изв. ТПУ. 2014. Т. 324.№3. С. 67.
  28. 28. Wang L., Hu J., Cheng Y. et al. // Scripta Mater. 2015. V. 107. P. 59. https://doi.org/10.1016/j.scriptamat.2015.05.020
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library