RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Heat Capacity and Magnetic Properties of PrMgAl11O19

PII
10.31857/S0044457X24100081-1
DOI
10.31857/S0044457X24100081
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 10
Pages
1424-1431
Abstract
Isobaric heat capacity of magnesium-praseodymium hexaaluminate PrMgAl11O19 with magnetoplumbite structure was measured by three calorimetric methods in the temperature range 2–1865 K. Heat capacity values were docked and smoothed to calculate thermodynamic functions (entropy, enthalpy change and derived Gibbs energy) in the mentioned temperature region. A gentle anomaly of heat capacity with a maximum of about 8 K was found, its entropy and enthalpy were calculated. Magnetic properties of PrMgAl11O19 have been studied using the method of dynamic magnetic susceptibility in the temperature range 2–300 K. Based on the results of measurements of magnetic properties, an anomaly was found on the imaginary component of dynamic magnetic susceptibility, the temperature range of which is consistent with the area of the anomaly of heat capacity.
Keywords
гексаалюминаты празеодим теплоемкость термодинамика динамическая магнитная восприимчивость
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Lu H., Wang C.-A., Zhang C. // Ceram. Int. 2014. V. 40. P. 16273. https://doi.org/10.1016/j.ceramint.2014.07.064
  2. 2. Gadow R., Lischka M. // Surf. Coat. Technol. 2002. V. 151–152. P. 392. https://doi.org/10.1016/S0257-8972 (01)01642-5
  3. 3. Bansal N.P., Zhu D. 2008. V. 202. P. 2698. https://doi.org/10.1016/j.surfcoat.2007.09.048
  4. 4. Zhang Y., Wang Y., Jarligo M.O. et al. // Opt. Lasers Eng. 2008. V. 46. P. 601. https://doi.org/10.1016/j.optlaseng.2008.04.001
  5. 5. Friedrich C., Gadow R., Schirmer T.J. // Therm. Spray Technol. 2001. V. 10. P. 592. https://doi.org/10.1361/105996301770349105
  6. 6. Liu Z.-G., Ouyang J.-H., Zhou Y. // J. Alloys Compd. 2009. V. 472. P. 319. https://doi.org/10.1016/j.jallcom.2008.04.042
  7. 7. Iyi N., Takekawa S., Kimura S. // J. Solid State Chem. 1989. V. 83. P. 8. https://doi.org/10.1016/0022-4596 (89)90048-0
  8. 8. Lee K.N. Protective Coatings for Gas Turbines, The Gas Turbine Handbook, Section 4.4.2, U.S. Department of Energy, NETL, 2006, p. 431.
  9. 9. Wang Y.-H., Ouyang J.-H., Liu Zh.-G. // J. Alloys Compd. 2009. V. 485. P. 734. https://doi.org/10.1016/j.jallcom.2009.06.068
  10. 10. Chen X., Gu L., Zou B. et al. // Surf. Coat. Technol. 2012. V. 206. P. 2265. https://doi.org/10.1016/j.surfcoat.2011.09.076
  11. 11. Cao X.Q., Zhang Y.F., Zhang J.F. et al. // J. Eur. Ceram. Soc. 2008. V. 28. P. 1979. https://doi.org/10.1016/j.jeurceramsoc.2008.01.023
  12. 12. Halvarsson M., Langer V., Vuorinen S. // Surf. Coat. Technol. 1995. V. 76–77. P. 358. https://doi.org/10.1016/0257-8972 (95)02558-8
  13. 13. Doležal V., Nádherný L., Rubešová K. et al. // Ceram. Int. 2019. V. 45. P. 11233. https://doi.org/10.1016/j.ceramint.2019.02.162
  14. 14. Lefebvre D., Thery J., Vivien D. // J. Am. Ceram. Soc. 1986. V. 69. P. 289. https://doi.org/10.1111/j.1151-2916.1986.tb07380.x
  15. 15. Kahn A., Lejus A.M., Madsac M. et al. // J. Appl. Phys. 1981. V. 52. P. 6864. https://doi.org/10.1063/1.328680
  16. 16. Lu X., Yuan J., Xu M. et al. // Ceram. Int. 2021. V. 47. P. 28892. https://doi.org/10.1016/j.ceramint.2021.07.050.
  17. 17. Lu H., Wang C.-A., Zhang C., Tong S. // J. Eur. Ceram. Soc. 2015. V. 35. P. 1297. http://dx.doi.org/10.1016/j.jeurceramsoc.2014.10.030
  18. 18. Leitner J., Voňka P., Sedmidubský D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7. https://doi.org/10.1016/j.tca.2009.08.002
  19. 19. Guskov V.N., Tyurin A.V., Guskov A.V. et al. // Ceram. Int. 2020. V. 46. P. 12822. https://doi.org/10.1016/j.ceramint.2020.02.052.
  20. 20. Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2023. Т. 68. № 11. С. 1607.
  21. 21. Рюмин М.А., Никифорова Г.Е., Тюрин А.В. и др. // Неорган. материалы. 2020. Т. 56. № 1. С. 102. https://doi.org/10.31857/S0002337X20010145
  22. 22. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 16. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  23. 23. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
  24. 24. Prohaska T., Irrgeher J., Benefield J. et al. // Pure Appl. Chem. 2022. V. 94. P. 573. https://doi.org/10.1515/pac-2019-0603
  25. 25. Colwelland J.H., Magnum B.W. // J. Appl. Phys. 1967. V. 38. P. 1468.
  26. 26. Zhou H.D., Wiebe C.R., Janik J.A. et al. // Phys. Rev. Lett. 2008. V. 101. P. 227204. https://doi.org/10.1103/PhysRevLett.101.227204
  27. 27. Greedan J.E. // J. Alloys Compd. 2006. V. 408–412. P. 444. https://doi.org/10.1016/j.jallcom.2004.12.084
  28. 28. Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2024. Т. 69. № 6. (в печати)
  29. 29. Тюрин А.В., Хорошилов А.В., Рюмин М.А. и др. // Журн. неорган. химии. 2020. Т. 65. № 12. С. 1668. al.
  30. 30. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
  31. 31. Gruber G.B., Justice B.H., Westrum E.F., Zandi B. // J. Chem. Thermodyn. 2002. V. 34. P. 457. https://doi.org/ 10.1006/jcht.2001.0860
  32. 32. Chase M.W. Jr. NIST-JANAF Thermochemical Tables. Am. Chem. Soc., 1998.
  33. 33. Barin I. Thermochemical Data of Pure Substances. Weinheim: VCH, 1995.
  34. 34. Ditmars D.A., Ishihara S., Chang S.S. et al. // J. Res. Natl. Bur. Stand. 1982. V. 87. P. 159.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library