- PII
- 10.31857/S0044457X24090125-1
- DOI
- 10.31857/S0044457X24090125
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 9
- Pages
- 1319-1328
- Abstract
- Using the relativistic linearized augmented cylindrical waves technique, the dependences of the band structure of single-walled SiC nanotubes on spin and chirality were calculated. It has been established that nanotubes are the wide-gap semiconductors with Eg equal to 2.26–3.15 eV, and the spin-orbit splittings of the valence and conduction band edges lie in the range of 0.05–3.5 meV. The energies of the spin-orbit gaps in righthanded and lefthanded enantiomers coincide, but their spin directions are opposite. Chiral nanotubes are determined that are most suitable for selective spin transport with potentially high fluxes of α- and β-electrons in opposite directions.
- Keywords
- одностенные нанотрубки SiC свойства зависящие от спина и хиральности цилиндрические волны селективный спиновый транспорт
- Date of publication
- 18.09.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 50
References
- 1. Casady J.B., Johnson R.W. // Solid-State Electron. 1996. V. 39. P. 409. https://doi.org/10.1016/0038-1101 (96)00045-7
- 2. Katoh Y., Snead L.L., Henager C.H. Jr et al. // J. Nucl. Mater. 2014. V. 455. P. 387. https://doi.org/10.1016/j.nucmat.2014.06.003
- 3. Properties of Silicon Carbide. INSPEC Institution of Electrical Engineers / Ed. Harris G.L. London, 1995.
- 4. Xi G., Peng Y., Wang S. et al. // J. Phys. Chem. B. 2004. V. 108. P. 20102. https://doi.org/10.1021/jp0462153
- 5. Wu R., Wu L., Yang G. et al. // J. Phys. D: Appl. Phys. 2007. V. 40. P. 3697. https://doi.org/10.1088/0022-3727/40/12/023
- 6. Wang C., Huang N., Zhuang H. et al. // Surf. Coat. Technol. 2016. V. 299. P. 96. https://doi.org/10.1016/j.surfcoat.2016.04.070
- 7. Sun L., Han C., Wu N. et al. // RSC Adv. 2018. V. 8. P. 13697. https://doi.org/10.1039/c8ra02164c
- 8. Hollabaugh C.M., Hull D.E., Newkirk L.R. et al. // J. Mater. Sci. 1983. V. 18. P. 3190. https://doi.org/10.1007/BF00544142
- 9. Zhu W.Z., Yan M. // Scripta Mater. 1998. V. 39. P. 1675. https://doi.org/10.1016/S1359-6462 (98)00372-8
- 10. Fan J., Li H., Wang J. et al. // Appl. Phys. Lett. 2012. V. 101. P. 131906. https://doi.org/10.1063/1.4755778
- 11. Beke D., Szekrenyes Z., Czigany Z. et al. // Nanoscale. 2015. V. 7. P. 10982. https://doi.org/10.1039/c5nr01204j
- 12. Lai H.L., Wong N.B., Zhou X.T. et al. // Appl. Phys. Lett. 2000. V. 76. P. 294. https://doi.org/10.1063/1.125636
- 13. Deng S.Z., Wu Z.S., Zhou J. et al. // Chem. Phys. Lett. 2002. V. 356. P. 511. https://doi.org/10.1016/S0009-2614 (02)00403-7
- 14. Li Z., Zhang J., Meng A. et al. // J. Phys. Chem. B. 2006. V. 110. P. 22382. https://doi.org/10.1021/jp063565b
- 15. Sun X.H., Li C.P., Wong W.K. et al. // J.Am. Chem. Soc. 2002. V. 124. P. 14464. https://doi.org/10.1021/ja0273997
- 16. Taguchi T., Igawa N., Yamamoto H. et al. // J.Am. Ceram. Soc. 2009. V. 88. P. 459. https://doi.org/10.1111/j.1551-2916.2005.00066.x
- 17. Taguchi T., Igawa N., Yamamoto H. et al. // Physica E. 2005. V. 28. P. 431. https://doi.org/10.1016/j.physe.2005.05.048
- 18. Taguchi T., Yamamoto S., Ohba H. // Appl. Surf. Sci. 2021. V. 551. P. 149421. https://doi.org/10.1016/j.apsusc.2021.149421 25
- 19. Huczko A., Bystrzejewski M., Lange H. et al. // J. Phys. Chem. B. 2005. V. 109. P. 16244. https://doi.org/10.1021/jp050837m
- 20. Zhou W.M., Yang B., Yang Z.X. et al. // Appl. Sci. 2008. V. 252. P. 5143. https://doi.org/10.1007/978-0-387-74132-1_2
- 21. Wang X., Liew K.M. // J. Phys. Chem. С. 2011. V. 115. P. 10388. https://doi.org/10.1021/jp2005937
- 22. Han Z., Zhu H., Zou Y. et al. // Phys. 2022. V. 38. P. 105658. https://doi.org/10.1016/j.rinp.2022.105658
- 23. Menon M., Richter E., Mavrandonakis A. et al. // Phys. Rev. B. 2004. V. 69. P. 115322. https://doi.org/10.1103/PhysRevB.69.115322
- 24. Vatankhah C., Badehian H.A. // Optik (Stuttg.). 2021. V. 237. P. 166740. https://doi.org/10.1016/j.ijleo.2021.166740
- 25. Huang S.P., Wu D.S., Hu J.M. et al. // Opt. Express. 2007. V. 15. P. 10947. https://doi.org/10.1364/OE.15.010947
- 26. Petrushenko I.K., Ivanov N.A. // Mod. Phys. Lett. B. 2013. V. 27. P. 29. https://doi.org/10.1142/S0217984913502102
- 27. Afshoon Z., Movlarooy T. // Silicon. 2023. V. 15. P. 4149. https://doi.org/10.1007/s12633-023-02314-9
- 28. Wu A., Song Q., Yang L. et al. // Comput. Theor. Chem. 2011. V. 977. P. 92. https://doi.org/10.1016/j.comptc.2011.09.013
- 29. Zhao M.W., Xia Y.Y., Zhang R.Q. et al. // J. Chem. Phys. 2005. V. 122. P. 214707. https://doi.org/10.1063/1.1927520
- 30. Li F., Xia Y.Y., Zhao M.W. et al. // J. Appl. Phys. 2005. V. 97. P. 104311. https://doi.org/10.1063/1.1891281
- 31. He T., Zhao M.W., Xia Y.Y. et al. // J. Chem. Phys. 2006.V. 125. P. 194710. https://doi.org/10.1063/1.2360269
- 32. Song J., Liu H., Henry D.J. // Comput. Mater. Sci. 2016. V. 125. P. 117. https://doi.org/10.1016/j.commatsci.2016.08.029
- 33. Alferi G., Kimoto T. // Nanotechnology. 2009. V. 20. P. 285703. https://doi.org/10.1088/0957-4484/20/28/285703
- 34. Alfieri G., Kimoto T. // J. Comput. Theor. Nanosci. 2012. V. 9. P. 1850. https://doi.org/10.1166/jctn.2012.2596
- 35. Talla J.A. // Phys. Lett., Sect. A: Gen. Solid State Phys. 2019. V. 383. P. 2076. https://doi.org/10.1016/j.physleta.2019.03.040
- 36. Ding R., Yintang Y., Lianx L. // J. Semicond. 2009. V. 30. P. 114010. https://doi.org/10.1088/1674-4926/30/11/114010
- 37. Itas Y.S., Suleiman A.B., Ndikilar C.E. et al. // Phys. Scr. 2023. V. 98. P. 015824. https://doi.org/10.1088/1402-4896/aca5cf
- 38. Ansari R., Rouhi S., Aryayi M. et al. // Scientia Iranica. 2012. V. 19. P. 1984. https://doi.org/10.1016/j.scient.2012.10.004
- 39. Setoodeh A.R., Jahanshahi M., Attariani H. // Comput. Mater. Sci. 2009. V. 47. P. 388. https://doi.org/10.1016/j.commatsci.2009.08.017
- 40. Yang R., Hilder T.A., Chung S.H. et al. // J. Phys. Chem. С. 2011. V. 15. P. 17255. https://doi.org/10.1021/jp201882d
- 41. Khademi M., Sahimi M. // J. Chem. Phys. 2011. V. 135. P. 204509. https://doi.org/10.1063/1.3663620
- 42. Hilder T.A., Yang R., Gordon D. et al. // J. Phys. Chem. С. 2012. V. 116. P. 4465. https://doi.org/10.1021/jp2113335
- 43. Yang S.H. // Appl. Phys. Lett. 2020. V. 116. P. 120502. https://doi.org/10.1063/1.5144921
- 44. Yang S.H., Naaman R., Stuart P.Y. et al. // Nature Rev. Phys. 2021. V. 3. P. 328. https://doi.org/10.1038/s42254-021-00302-9
- 45. Michaeli K., Kantor-Uriel N., Naaman R. et al. // Chem. Soc. Rev. 2016. V. 45. P. 6478. https://doi.org/10.1039/C6CS00369A
- 46. Naaman R., Waldeck D.H. // Annu. Rev. Phys. Chem. 2015. V. 66. P. 263. https://doi.org/10.1146/annurev-physchem-040214-121554
- 47. Yang S.H. // Appl. Phys. Lett. 2021. V. 16. P. 120502. https://doi.org/10.1063/5.0039147
- 48. Waldeck D.H., Naaman R., Paltiel Y. // APL Mater. 2021. V. 9. P. 040902. https://doi.org/10.1063/5.0049150
- 49. Wang X., Changjiang Y., Felser C. // Adv. Mater. 2024. V. 36. P. 230874. https://doi.org/10.1002/adma.202308746
- 50. D’yachkov P.N. // Quantum chemistry of nanotubes: electronic cylindrical waves. London: Taylor and Francis, 2019. 212 p.
- 51. D’yachkov P.N., Makaev D.V. // Phys. Rev. B. 2007. V. 76. P. 19541. https://doi.org/10.1103/PhysRevB.76.195411
- 52. D’yachkov P.N., Makaev D.V. // Int. J. Quantum Chem. 2016. V. 116. P. 316. https://doi.org/10.1002/qua.25030
- 53. D’yachkov P.N., D’yachkov E.P. // Appl. Phys. Lett. 2022. V. 120. P. 173101. https://doi.org/10.1063/5.0086902
- 54. D’yachkov E.P., D’yachkov P.N. // J. Phys. Chem. С. 2019. V. 123. P. 26005. https://doi.org/10.1021/acs.jpcc.9b07610
- 55. D’yachkov P.N., Krasnov D.O. // Chem. Phys. Lett. 2019. V. 720. P. 15. https://doi.org/10.1016/j.cplett.2019.02.006
- 56. D’yachkov P.N. // J. Nanotechnol. Smart Mater. 2023. V. 9. P. 1208. https://doi.org/10.1109/5.771073
- 57. Manchon A, Koo H.C., Nitta J. et al. // Nature Mater. 2015. V. 871. P. 4360. https://doi.org/10.1038/nmat4360
- 58. Yeom J. // Acc. Mater. Res. 2021. V. 2. P. 471. https://doi.org/10.1021/accountsmr.1c00059
- 59. Bercioux D., Lucignano P. // Rep. Prog. Phys. 2015. V. 78. P. 106001. https://doi.org/10.1088/0034-4885/78/10/106001
- 60. Yan B. arXiv:2312.03902v1. 2023. https://doi.org/10.48550/arXiv.2312.03902
- 61. Ray K., Ananthavel S.P., Waldeck D.H. et al. // Science.1999. V. 283. P. 814. https://doi.org/10.1126/science.283.5403.8
- 62. Göhler B., Hamelbeck V., Markus T.Z. et al. // Science. 2011. V. 331. P. 894. https://doi.org/10.1126/science.1199339
- 63. Yeganeh S., Ratner M.A., Medina E. et al. // J. Chem. Phys. 2009. V. 131. P. 014707. https://doi.org/10.1063/1.3167404
- 64. Eremko A.A., Loktev V.M. // Phys. Rev. B. 2013. V. 88. P. 165409. https://doi.org/10.1103/PhysRevB.88.165409
- 65. Gutierrez R., Díaz E., Naaman R. // Phys. Rev. B. 2012. V. 85. P. 081404. https://doi.org/10.1103/PhysRevB.85.081404
- 66. Gutierrez R., Díaz E., Gaul C. et al. // J. Phys. Chem. С. 2013. V. 117. P. 22276. https://doi.org/10.1021/jp401705x
- 67. Naaman R., Paltiel Y., Waldeck D.H. // Acc. Chem. Res. 2020. V. 53. P. 2659. https://doi.org/10.1021/acs.accounts.0c00485
- 68. Michaeli K., Naaman R. // J. Phys. Chem. С. 2019. V. 123. P. 17043. https://doi.org/10.1021/acs.jpcc.9b05020
- 69. Naaman R., Paltiel Y., Waldeck D.H. // J. Phys. Chem. Lett. 2020. V. 11. P. 3660. https://doi.org/10.1021/acs.jpclett.0c00474
- 70. Fransson J. // J. Phys. Chem. Lett. 2019. V. 10. P. 7126. https://doi.org/10.1021/acs.jpclett.9b02929
- 71. Fransson J. // J. Phys. Chem. Lett. 2022. V. 13. P. 808. https://doi.org/10.1021/acs.jpclett.1c03925