RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Synthesis, crystal structure and thermodynamic properties of Ca3Y2Ge3O12 germanate

PII
10.31857/S0044457X24090093-1
DOI
10.31857/S0044457X24090093
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 9
Pages
1291-1295
Abstract
Orthogermanate Ca3Y2Ge3O12 has been prepared by solid-phase method from CaCO3, Y2O3 and GeO2 by firing in air at a temperature of 1773 K. Using X-ray diffraction, its crystal structure was clarified (sp. gr. Iad, a =12.80255(14) Å, V = 2098.34(7) Å3). The high-temperature heat capacity of oxide compound has been determined in the temperature range 320–1000 K by differential scanning calorimetry and the experimental data have been used to evaluate thermodynamic properties of Ca3Y2Ge3O12.
Keywords
твердофазный синтез германаты редкоземельных элементов высокотемпературная теплоемкость термодинамические свойства
Date of publication
18.09.2024
Year of publication
2024
Number of purchasers
0
Views
70

References

  1. 1. Piccinelli F., Lausi A., Bettinelli M. // J. Solid State Chem. 2013. V. 205. P. 190. https://doi.org/10.1016/j.jssc.2013.07.021
  2. 2. Baklanova Y.V., Enyashin A.N., Maksimova L.G. et al. // Ceram. Int. 2018. V. 44. P. 6959. https://doi.org/10.1016/j.ceramint.2018.01.128
  3. 3. Tang Y., Zhang Z., Li J. et al. // J. Eur. Ceram. Soc. 2020. V. 40. P. 3989. https://doi.org/10.1016/j.eurceramsoc.2020.04.052
  4. 4. Mao N., Liu S., Song Z. et al. // J. Alloys Compd. 2021. V. 863. P. 158699. https://doi.org/10.1016/j.jallcom.2021.158699
  5. 5. Ji C., Huang Z., Tian X. et al. // J. Lumin. 2021. V. 232. P. 117775. https://doi.org/10.1016/j.jlumin.2020.117775
  6. 6. Li Y., Shao Y., Zhang W et al. // J.Am. Ceram. Soc. 2021. V. 104. P. 6299. https://doi.org/10.1111/jace.18015
  7. 7. Cui J., Cao L., Wang X. et al. // J. Lumin. 2021. V. 237. P. 118170. https://doi.org/10.1016/j.jlumin.2021.118170
  8. 8. Cui J., Zheng Y., Wang Z. et al. // Mater. Adv. 2022. V. 3. P. 2772. https://doi.org/10.1039/d2ma00009a
  9. 9. Леонидов И.И. // Тез. IX Национальной кристаллохимической конф. Суздаль, 4–8 июня 2018. М.: Граница, 2018. С. 69.
  10. 10. Fiquet G., Gillet P., Richet P. et al. // Phys. Chem. Miner. 1992. V. 18. P. 469. https://doi.org/10.1007/BF00200970
  11. 11. Shuchunov A.N., Gorshkov O.N., Smirnova N.N. et al. // J. Chem. Thermodyn. 2014. V. 78. P. 58. https://doi.org/10.1016/j.jct.2014.06.019
  12. 12. Денисова Л.Т., Молокеев М.С., Каргин Ю.Ф. и др. // Неорган. материалы. 2022. Т. 58. № 4. С. 432. https://doi.org/10.31857/S0002337X22040030
  13. 13. Isaacs I. // Experientia. 1969. V. 25. P. 239. https://doi.org/10.1007/BF02034364
  14. 14. Lévy D., Barbier J. // Acta Crystallogr. Sect. С. 1999. V. 56. P. 1611.
  15. 15. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Неорган. материалы. 2017. Т. 53. № 1. С. 71. https://doi.org/10.7868/S0002337X17010043
  16. 16. Денисова Л.Т., Каргин Ю.Ф., Денисов В.М. // Неорган. материалы. 2017. Т. 53. № 9. С. 975. https://doi.org/10.7868/S0002337X17090111
  17. 17. Maier C.G., Kelley K.K. // J.Am. Chem. Soc. 1932. V. 54. № 8. P. 3243. https://doi.org/10.1021/ja01347a029
  18. 18. Leitner J., Chuchvalec P., Sedmidubský D. et al. // Thermochim. Acta. 2003. V. 395. P. 27.
  19. 19. Leitner J., Voňka P., Sedmidubský D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7. https://doi.org/10.1016/j.tca.2009.08.002
  20. 20. Кубашевский О., Олкокк С.Б. Металлургическая термохимия. М.: Металлургия, 1982. 392 с.
  21. 21. Spencer P.J. // Thermochim. Acta. 1998. V. 314. P. 1. https://doi.org/10.1016/S0040-6031 (97)00469-3
  22. 22. Кумок В.Н. // Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108.
  23. 23. Mostafa A.T.M.G., Eakman J.M., Montoya M.M., Yarbro S.L. // Ind. Eng. Chem. Res. 1996. V. 35. P. 343. https://doi.org/10.1021/ie9501485
  24. 24. Успенская И.А., Иванов А.С., Константинова Н.М., Куценок И.Б. // Журн. физ. химии. 2022. Т. 96. № 9. С. 1302. https://doi.org/10.31857/S0044453722090291
  25. 25. Третьяков Ю.Д. Твердофазные реакции. М.: Химия, 1967. 451 с.
  26. 26. Morss L.R., Konings R.J.M. // Binary rare earth oxides. N.Y.: Kluwer Academ. Publishers., 2004. P. 163.
  27. 27. Осина Е.Л. // Теплофизика высоких температур. 2017. Т. 55. № 2. С. 223.
  28. 28. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Журн. неорган. химии. 2018. Т. 63. № 3. С. 338. https://doi.org/10.7868/S0044457X1803011X
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library