RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Bioglass 45S5 doped with Bi2O3 for medical use

PII
10.31857/S0044457X24090063-1
DOI
10.31857/S0044457X24090063
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 9
Pages
1267-1276
Abstract
Bioglass 45S5 was doped with bismuth oxide in concentrations up to 40 wt.%. The amorphous nature of the synthesized glasses was confirmed by X-ray phase analysis. The influence of Bi2O3 on the properties of bioglass was studied. In a series of samples containing from 0 to 40 wt.% bismuth oxide, their characteristics change as follows: the pH values of the model medium during glass leaching decrease from 7.84 to 7.46; radiopacity increases from 1150 HU to values exceeding 11000 HU; chemical degradation drops from 1.299% to 0.424%; bioactivity decreases in the range of 0 – 10 wt.% and is absent in the range of 20–40 wt.% Bi2O3. Glasses containing up to 10 wt.% Bi2O3 can find application in reconstructive surgery. They have radiopaque and bioactive properties. Glasses containing 20–40 wt.% Bi2O3 have high radiopacity, chemical resistance, and a slight effect on the pH of the medium when dissolved. They may be promising as radiomodifiers in the treatment of malignant neoplasms using radiation therapy.
Keywords
биостекло висмутсодержащие материалы радиомодификаторы пиролиз органических растворов
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Hench L.L. // J. Mater. Sci: Mater. Med. 2006. V. 17. P. 967. https://doi.org/10.1007/s10856-006-0432-z
  2. 2. Miguez-Pacheco V., Hench L.L., Boccaccini A.R. // Acta Biomater. 2015. V. 13. P. 1. https://doi.org/10.1016/j.actbio.2014.11.004
  3. 3. Mazzoni E., Iaquinta M.-R., Lanzillotti C. et al. // Front. Bioeng. Biotechnol. 2021. V. 9. P. 613787. https://doi.org/10.3389/fbioe.2021.613787
  4. 4. Wang R., Li H., Sun H. // Encyclopedia of Environmental Health. 2019. P. 415. https://doi.org/10.1016/B978-0-12-409548-9.11870-6
  5. 5. Shahbazi‐Gahrouei D., Choghazardi Y., Kazemzadeh A. et al. // IET Nanobiotechnol. 2023. V. 17. P. 302. https://doi.org/10.1049/nbt2.12134
  6. 6. Thomas F., Bialek B., Hensel R. // J. Clin. Toxicol. 2011. V. 3. P. 4. https://doi.org/10.4172/2161-0495.S3-004
  7. 7. Pazarçeviren A.E., Tahmasebifar A., Tezcaner A. et al. // Ceram. Int. 2018. V. 44. P. 3791. https://doi.org/10.1016/j.ceramint.2017.11.164
  8. 8. Mohn D., Zehnder M., Imfeld T., Stark W.J. // Int. Endod. J. 2010. V. 43. P. 210. https://doi.org/10.1111/j.1365-2591.2009.01660.x
  9. 9. Prasad S.S, Adarsh T., Anand A. et al. // J. Mater. Res. 2018. V. 33. P. 178. https://doi.org/10.1557/jmr.2017.442
  10. 10. Wang L., Long N.J., Li L. et al. // Light Sci. Appl. 2018. V. 7. https://doi.org/10.1038/s41377-018-0007-z
  11. 11. Du J., Ding H., Fu S. et al. // Front. Bioeng. Biotechnol. Sec. Nanobiotechnology. 2023. V. 10. P. 1098923. https://doi.org/10.3389/fbioe.2022.1098923
  12. 12. Khatua C., Bodhak S., Kundu B., Balla V.K. // Materialia. 2018. V. 4. P. 361. https://doi.org/10.1016/j.mtla.2018.10.014
  13. 13. Heid S., Stoessel P.R., Tauböck T.T. et al. // Biomed Glass. 2016. V. 2. P. 29. https://doi.org/10.1515/bglass-2016-0004/html
  14. 14. Pazarçeviren A.E., Evis Z., Keskin D., Tezcaner A. // Biomed Mater. 2019. V. 14. P. 035018. https://doi.org/10.1088/1748-605X/ab007b
  15. 15. Kokubo T., Takadama H. // Biomaterials. 2006. V. 27. P. 2907. https://doi.org/10.1016/j.biomaterials.2006.01.017
  16. 16. Prasad S.S., Ratha I., Adarsh T. et al. // J. Mater. Res. 2018. V. 33. P. 178. https://doi.org/10.1557/jmr.2017.442
  17. 17. Rabiee M., Nazparvar N., Azizian M. et al. // Ceram. Int. 2015. V. 41. P. 7241. https://doi.org/10.1016/j.ceramint.2015.02.140
  18. 18. Misch C.E. // Int. J. Oral Implantol. 1990. V. 6. P. 23.
  19. 19. Łaczka M., Stoch L., Górecki J. // J. Alloys Compd. 1992. V. 186. P. 279. https://doi.org/10.1016/0925-8388 (92)90015-2
  20. 20. Плотникова О.С., Грищенко Д.Н., Медков М.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 9. С. 1219. https://doi.org/10.31857/S0044457X22090094
  21. 21. Смагулова З.Ш., Макарушко С.Г., Садыкова Х.М. и др. // Здоровье. Медицинская экология. М.: Наука, 2009. Т. 39–40. С. 173.
  22. 22. Silver I.A., Deas J., Erecińska M. // Biomaterials. 2001. V. 22. P. 175. https://doi.org/10.1016/S0142-9612 (00)00173-3
  23. 23. Cerruti M., Greenspan D., Powers K. // Biomaterials. 2005. V. 26. P. 1665. https://doi.org/10.1016/j.biomaterials.2004.07.009
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library